Surface energy induced microstructural engineering of bio-derived N-doped carbon fibers anchored by CoNi nanoparticles for superior microwave absorption
{"title":"Surface energy induced microstructural engineering of bio-derived N-doped carbon fibers anchored by CoNi nanoparticles for superior microwave absorption","authors":"Ying Li, Zhenxin Liu, Yuhao Lu, Minglong Yang, Peng Zhang, Dongyi Lei, Chengkan Liu, Sijia Wang, Chunlei Dong","doi":"10.1007/s42114-025-01262-9","DOIUrl":null,"url":null,"abstract":"<div><p>Microstructural engineering has been an effective way to modulate the performance of electromagnetic wave absorption (EMA) materials. However, there are still severe challenges in how to design and regulate the microstructure effectively and further elucidate its mechanisms. Here, three-dimensional (3D) bio-derived N-doped carbon fibers anchored by CoNi nanoparticles (N-C<sub>f</sub>@CoNi) nanocomposites were successfully prepared using biomass cotton and ZIF-67 precursor as raw materials by a two-step impregnation-carbonization method. By ingeniously adjusting the mass ratio of the ZIF-67 precursor, the surface morphology of balsam pear-like fiber was induced by crystal surface energy to achieve a transition from a “nanotube-assembled nest-like” structures to “rice-shaped nanosheets” to “nanoparticles.” The unique microstructural engineering strategy endows the N-C<sub>f</sub>@CoNi nanocomposites with an abundant conductive network, enhanced multiple reflection and absorption, polarization, and magnetic loss, thereby leading to distinguished EMA performance, especially ultrawide EAB values. The optimized N-C<sub>f</sub>@CoNi nanocomposites display a minimum reflection loss (RL<sub>min</sub>) of − 59.43dB and an effective absorption bandwidth (EAB) of 8.5 GHz at a matching thickness of 2.16 mm. The result underscores the potential of microstructural engineering induced by crystal surface energy in optimizing the microwave absorption of N-C<sub>f</sub>@CoNi nanocomposites, laying the foundation for the development of efficient EMA materials with controllable micro-morphology.</p></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"8 2","pages":""},"PeriodicalIF":23.2000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42114-025-01262-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-025-01262-9","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
Microstructural engineering has been an effective way to modulate the performance of electromagnetic wave absorption (EMA) materials. However, there are still severe challenges in how to design and regulate the microstructure effectively and further elucidate its mechanisms. Here, three-dimensional (3D) bio-derived N-doped carbon fibers anchored by CoNi nanoparticles (N-Cf@CoNi) nanocomposites were successfully prepared using biomass cotton and ZIF-67 precursor as raw materials by a two-step impregnation-carbonization method. By ingeniously adjusting the mass ratio of the ZIF-67 precursor, the surface morphology of balsam pear-like fiber was induced by crystal surface energy to achieve a transition from a “nanotube-assembled nest-like” structures to “rice-shaped nanosheets” to “nanoparticles.” The unique microstructural engineering strategy endows the N-Cf@CoNi nanocomposites with an abundant conductive network, enhanced multiple reflection and absorption, polarization, and magnetic loss, thereby leading to distinguished EMA performance, especially ultrawide EAB values. The optimized N-Cf@CoNi nanocomposites display a minimum reflection loss (RLmin) of − 59.43dB and an effective absorption bandwidth (EAB) of 8.5 GHz at a matching thickness of 2.16 mm. The result underscores the potential of microstructural engineering induced by crystal surface energy in optimizing the microwave absorption of N-Cf@CoNi nanocomposites, laying the foundation for the development of efficient EMA materials with controllable micro-morphology.
期刊介绍:
Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field.
The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest.
Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials.
Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.