Effect of electrolytes on electrical charge storage performance in a compost-based symmetric device

IF 2.5 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Poonam, Vijay Kumar, Sandeep Yadav,  Chetan,  Gauri, Suhaas Gupta, Ravi Kant Choubey, S. Gaurav, Tejendra K. Gupta, Rajeev Ahuja, Sunil Kumar
{"title":"Effect of electrolytes on electrical charge storage performance in a compost-based symmetric device","authors":"Poonam,&nbsp;Vijay Kumar,&nbsp;Sandeep Yadav,&nbsp; Chetan,&nbsp; Gauri,&nbsp;Suhaas Gupta,&nbsp;Ravi Kant Choubey,&nbsp;S. Gaurav,&nbsp;Tejendra K. Gupta,&nbsp;Rajeev Ahuja,&nbsp;Sunil Kumar","doi":"10.1007/s00339-025-08309-0","DOIUrl":null,"url":null,"abstract":"<div><p>The prevalence of compost and its integration within the bio-circular economy, facilitating the seamless conversion of bio-waste into compost, present an auspicious avenue for the exploration of renewable energy storage solutions. Thus, the current study investigates the effect of electrolytes on faradic and non-faradic processes of charge storage in a symmetrical device design based on compost. The inquiry examines the composts as an electrode material and the influence of various current collectors (G–G, Cu–Cu and IN–IN) across distinct aqueous electrolyte environments (1 M KNO<sub>3</sub>, 1 M KCl and 1 M KOH). The findings reveal the composts’ capacity to accommodate both capacitive and non-capacitive charge storage processes within a symmetric dual-current collector apparatus, showcasing the multifaceted charge storage modalities akin to those observed in capacitors and batteries. The electrochemical assessments, conducted through cyclic voltammetry (CV), galvanostatic charge–discharge (GCD) profiling, and electrochemical impedance spectroscopy (EIS), elucidate the non-faradaic and faradaic charge storage mechanisms in terms of the charge storage efficiency, temporal characteristics of the charge and discharge cycle, specific capacitance, and specific capacity. The results obtained evince the superior charge storage capabilities of the compost samples across various electrolyte solutions relative to the aqueous media. The compost specimen featuring a C:N ratio of 145.44 in a 1 M KCl solution assembled in a symmetric G–G current collectors device exhibited the optimal electrochemical performance. At a scan rate of 100 mV/s within a potential window of ± 4.5 V, the CV studies exhibited an area under the curve of 3.3142C, a specific capacitance of 18.4mF/g and a specific capacity of 82.8 mC/g, while the GCD studies were characterised by a charging time of 51 s, a discharging time of 47.2 s, a specific capacitance of 10.4 mF/g and a specific capacity of 94.4 mC/g at an applied current of 400 mA within a potential window of ± 4.5 V.</p></div>","PeriodicalId":473,"journal":{"name":"Applied Physics A","volume":"131 3","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics A","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00339-025-08309-0","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The prevalence of compost and its integration within the bio-circular economy, facilitating the seamless conversion of bio-waste into compost, present an auspicious avenue for the exploration of renewable energy storage solutions. Thus, the current study investigates the effect of electrolytes on faradic and non-faradic processes of charge storage in a symmetrical device design based on compost. The inquiry examines the composts as an electrode material and the influence of various current collectors (G–G, Cu–Cu and IN–IN) across distinct aqueous electrolyte environments (1 M KNO3, 1 M KCl and 1 M KOH). The findings reveal the composts’ capacity to accommodate both capacitive and non-capacitive charge storage processes within a symmetric dual-current collector apparatus, showcasing the multifaceted charge storage modalities akin to those observed in capacitors and batteries. The electrochemical assessments, conducted through cyclic voltammetry (CV), galvanostatic charge–discharge (GCD) profiling, and electrochemical impedance spectroscopy (EIS), elucidate the non-faradaic and faradaic charge storage mechanisms in terms of the charge storage efficiency, temporal characteristics of the charge and discharge cycle, specific capacitance, and specific capacity. The results obtained evince the superior charge storage capabilities of the compost samples across various electrolyte solutions relative to the aqueous media. The compost specimen featuring a C:N ratio of 145.44 in a 1 M KCl solution assembled in a symmetric G–G current collectors device exhibited the optimal electrochemical performance. At a scan rate of 100 mV/s within a potential window of ± 4.5 V, the CV studies exhibited an area under the curve of 3.3142C, a specific capacitance of 18.4mF/g and a specific capacity of 82.8 mC/g, while the GCD studies were characterised by a charging time of 51 s, a discharging time of 47.2 s, a specific capacitance of 10.4 mF/g and a specific capacity of 94.4 mC/g at an applied current of 400 mA within a potential window of ± 4.5 V.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Physics A
Applied Physics A 工程技术-材料科学:综合
CiteScore
4.80
自引率
7.40%
发文量
964
审稿时长
38 days
期刊介绍: Applied Physics A publishes experimental and theoretical investigations in applied physics as regular articles, rapid communications, and invited papers. The distinguished 30-member Board of Editors reflects the interdisciplinary approach of the journal and ensures the highest quality of peer review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信