{"title":"Damping of Oscillations of Charged Particles in the Thermal Field in a Glow-Discharge Plasma","authors":"D. N. Polyakov, V. V. Shumova, L. M. Vasilyak","doi":"10.1134/S1063780X24602001","DOIUrl":null,"url":null,"abstract":"<p>It is demonstrated experimentally that the thermophoretic force acting upon microparticles in the thermal field in complex plasma can be used for effective control of a cloud of charged microparticles formed in an electrostatic trap in the positive-column stratum of a glow discharge. Variation in the thermal-field temperature gradient is found to cause changes in the cloud location in plasma volume, its shape and size, along with suppression of oscillations of microparticles in the directions transverse with respect to this gradient. Microparticles of larger size experience stronger thermal action, and damping of microparticle oscillations occurs in conjunction with changes in the cloud spatial position. Obtained experimental results are consistent with theoretical concepts of the phenomena under consideration.</p>","PeriodicalId":735,"journal":{"name":"Plasma Physics Reports","volume":"50 12","pages":"1609 - 1613"},"PeriodicalIF":0.9000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Physics Reports","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063780X24602001","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
It is demonstrated experimentally that the thermophoretic force acting upon microparticles in the thermal field in complex plasma can be used for effective control of a cloud of charged microparticles formed in an electrostatic trap in the positive-column stratum of a glow discharge. Variation in the thermal-field temperature gradient is found to cause changes in the cloud location in plasma volume, its shape and size, along with suppression of oscillations of microparticles in the directions transverse with respect to this gradient. Microparticles of larger size experience stronger thermal action, and damping of microparticle oscillations occurs in conjunction with changes in the cloud spatial position. Obtained experimental results are consistent with theoretical concepts of the phenomena under consideration.
期刊介绍:
Plasma Physics Reports is a peer reviewed journal devoted to plasma physics. The journal covers the following topics: high-temperature plasma physics related to the problem of controlled nuclear fusion based on magnetic and inertial confinement; physics of cosmic plasma, including magnetosphere plasma, sun and stellar plasma, etc.; gas discharge plasma and plasma generated by laser and particle beams. The journal also publishes papers on such related topics as plasma electronics, generation of radiation in plasma, and plasma diagnostics. As well as other original communications, the journal publishes topical reviews and conference proceedings.