{"title":"Emergence and enhancement of feedback control-induced quantum entanglement","authors":"M. Amazioug, Jia-Xin Peng, D. Dutykh, M. Asjad","doi":"10.1140/epjp/s13360-024-05937-y","DOIUrl":null,"url":null,"abstract":"<div><p>We present a scheme for controlling quantum correlations by applying feedback to the cavity mode that exits a cavity while interacting with a mechanical oscillator and magnons. In a hybrid cavity magnomechanical system with a movable mirror, the proposed coherent feedback scheme allows for the enhancement of both bipartite and tripartite quantum correlations. Moreover, we demonstrate that the resulting entanglement remains robust with respect to ambient temperatures in the presence of coherent feedback control.</p></div>","PeriodicalId":792,"journal":{"name":"The European Physical Journal Plus","volume":"140 2","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal Plus","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjp/s13360-024-05937-y","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We present a scheme for controlling quantum correlations by applying feedback to the cavity mode that exits a cavity while interacting with a mechanical oscillator and magnons. In a hybrid cavity magnomechanical system with a movable mirror, the proposed coherent feedback scheme allows for the enhancement of both bipartite and tripartite quantum correlations. Moreover, we demonstrate that the resulting entanglement remains robust with respect to ambient temperatures in the presence of coherent feedback control.
期刊介绍:
The aims of this peer-reviewed online journal are to distribute and archive all relevant material required to document, assess, validate and reconstruct in detail the body of knowledge in the physical and related sciences.
The scope of EPJ Plus encompasses a broad landscape of fields and disciplines in the physical and related sciences - such as covered by the topical EPJ journals and with the explicit addition of geophysics, astrophysics, general relativity and cosmology, mathematical and quantum physics, classical and fluid mechanics, accelerator and medical physics, as well as physics techniques applied to any other topics, including energy, environment and cultural heritage.