Phage-displayed antibody fragments in microfluidic paper-based devices: a novel approach for sensitive detection of glycine-extended gastrin 17 biomarker using gold nanoparticles

IF 2.3 4区 工程技术 Q2 INSTRUMENTS & INSTRUMENTATION
Shokouh Jahedi, Mohammad Reza Tohidkia, Mahdad Esmaeili, Farhad Bani, Saeed Kaboli
{"title":"Phage-displayed antibody fragments in microfluidic paper-based devices: a novel approach for sensitive detection of glycine-extended gastrin 17 biomarker using gold nanoparticles","authors":"Shokouh Jahedi,&nbsp;Mohammad Reza Tohidkia,&nbsp;Mahdad Esmaeili,&nbsp;Farhad Bani,&nbsp;Saeed Kaboli","doi":"10.1007/s10404-025-02791-x","DOIUrl":null,"url":null,"abstract":"<div><p>To evaluate the potential use of phage-displayed recombinant antibody fragments as biorecognition elements on microfluidic paper-based devices (µPADs), phage-displayed VL and soluble VL antibody fragments were immobilized on the chitosan-modified surface of µPADs to detect glycine-extended gastrin 17 (G17-Gly) an integral peptide biomarker for colorectal cancer. Additionally, the phage shaft displaying the scFv antibody fragment, used as a detection probe, was conjugated with gold nanoparticles (GNPs) and characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), and UV–visible spectroscopy (UV–Vis). Following the microfluidic sandwich immunoassay, the mean intensity of the color spots was quantitatively analyzed using an image analysis program. Peptide calibration curves showed a linear relationship between the intensity of the color spot signal and the logarithm of the peptide concentration within the ranges of 10⁻⁶–5 × 10⁻<sup>1</sup> µM (R<sup>2</sup> = 0.98) for the phage-VL fragment and 10⁻<sup>4</sup>–1 µM (R<sup>2</sup> = 0.97) for the soluble VL fragment, with limits of detection (LOD) of 0.9 and 29 pM, respectively. The proposed µPAD-based immunoassay with the desirable LODs without further amplification provides a simple, versatile means for detecting biomarkers and pathogens of interest.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"29 3","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microfluidics and Nanofluidics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10404-025-02791-x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

To evaluate the potential use of phage-displayed recombinant antibody fragments as biorecognition elements on microfluidic paper-based devices (µPADs), phage-displayed VL and soluble VL antibody fragments were immobilized on the chitosan-modified surface of µPADs to detect glycine-extended gastrin 17 (G17-Gly) an integral peptide biomarker for colorectal cancer. Additionally, the phage shaft displaying the scFv antibody fragment, used as a detection probe, was conjugated with gold nanoparticles (GNPs) and characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), and UV–visible spectroscopy (UV–Vis). Following the microfluidic sandwich immunoassay, the mean intensity of the color spots was quantitatively analyzed using an image analysis program. Peptide calibration curves showed a linear relationship between the intensity of the color spot signal and the logarithm of the peptide concentration within the ranges of 10⁻⁶–5 × 10⁻1 µM (R2 = 0.98) for the phage-VL fragment and 10⁻4–1 µM (R2 = 0.97) for the soluble VL fragment, with limits of detection (LOD) of 0.9 and 29 pM, respectively. The proposed µPAD-based immunoassay with the desirable LODs without further amplification provides a simple, versatile means for detecting biomarkers and pathogens of interest.

微流控纸基装置中噬菌体显示抗体片段:一种利用金纳米颗粒灵敏检测甘氨酸延伸胃泌素17生物标志物的新方法
为了评估噬菌体展示的重组抗体片段作为微流控纸基装置(µPADs)生物识别元件的潜在应用价值,将噬菌体展示的VL和可溶性VL抗体片段固定在微流控纸基装置壳聚糖修饰的表面,检测结直肠癌完整肽生物标志物甘氨酸延伸胃泌素17 (G17-Gly)。此外,展示scFv抗体片段的噬菌体轴作为检测探针,与金纳米粒子(GNPs)偶联,并通过动态光散射(DLS)、透射电子显微镜(TEM)和紫外可见光谱(UV-Vis)对其进行了表征。在微流控夹心免疫分析之后,使用图像分析程序定量分析色斑的平均强度。在噬菌体-VL片段和可溶VL片段的10 - 4-1µM (R2 = 0.97)范围内,色斑信号强度与肽浓度的对数呈线性关系,检测限(LOD)分别为0.9和29 pM。提出的基于µpad的免疫测定法具有所需的lod,无需进一步扩增,为检测感兴趣的生物标志物和病原体提供了一种简单,通用的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microfluidics and Nanofluidics
Microfluidics and Nanofluidics 工程技术-纳米科技
CiteScore
4.80
自引率
3.60%
发文量
97
审稿时长
2 months
期刊介绍: Microfluidics and Nanofluidics is an international peer-reviewed journal that aims to publish papers in all aspects of microfluidics, nanofluidics and lab-on-a-chip science and technology. The objectives of the journal are to (1) provide an overview of the current state of the research and development in microfluidics, nanofluidics and lab-on-a-chip devices, (2) improve the fundamental understanding of microfluidic and nanofluidic phenomena, and (3) discuss applications of microfluidics, nanofluidics and lab-on-a-chip devices. Topics covered in this journal include: 1.000 Fundamental principles of micro- and nanoscale phenomena like, flow, mass transport and reactions 3.000 Theoretical models and numerical simulation with experimental and/or analytical proof 4.000 Novel measurement & characterization technologies 5.000 Devices (actuators and sensors) 6.000 New unit-operations for dedicated microfluidic platforms 7.000 Lab-on-a-Chip applications 8.000 Microfabrication technologies and materials Please note, Microfluidics and Nanofluidics does not publish manuscripts studying pure microscale heat transfer since there are many journals that cover this field of research (Journal of Heat Transfer, Journal of Heat and Mass Transfer, Journal of Heat and Fluid Flow, etc.).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信