Influence of Porosity on Vibration of Porous FG Plates Resting on an Arbitrarily Orthotropic Winkler-Pasternak Foundation by PDDO

IF 2 3区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yongyu Yang, Xiaoqi Wang, Hang Zhao, Chao Wang, Changzheng Cheng, Raj Das
{"title":"Influence of Porosity on Vibration of Porous FG Plates Resting on an Arbitrarily Orthotropic Winkler-Pasternak Foundation by PDDO","authors":"Yongyu Yang,&nbsp;Xiaoqi Wang,&nbsp;Hang Zhao,&nbsp;Chao Wang,&nbsp;Changzheng Cheng,&nbsp;Raj Das","doi":"10.1007/s10338-024-00539-8","DOIUrl":null,"url":null,"abstract":"<div><p>This paper studies the vibration responses of porous functionally graded (FG) thin plates with four various types of porous distribution based on the physical neutral plane by employing the peridynamic differential operator (PDDO). It is assumed that density and elastic modulus continuously vary along the transverse direction following the power law distribution for porous FG plates. The governing differential equation of free vibration for a porous rectangular FG plate and its associated boundary conditions are expressed by a Lévy-type solution based on nonlinear von Karman plate theory. Dimensionless frequencies and mode shapes are obtained after solving the characteristic equations established by PDDO. The results of the current method are validated through comparison with existing literature. The effects of geometric parameters, material properties, elastic foundation, porosity distribution, and boundary conditions on the frequency are investigated and discussed in detail. The highest fundamental dimensionless frequency occurs under SCSC boundary conditions, while the lowest is under SFSF boundary conditions. The porous FG plate with the fourth pore type, featuring high density of porosity at the top and low at the bottom, exhibits the highest fundamental frequency under SSSS, SFSF, and SCSC boundary conditions. The dimensionless frequency increases with an increase in the elastic foundation stiffness coefficient.</p></div>","PeriodicalId":50892,"journal":{"name":"Acta Mechanica Solida Sinica","volume":"38 1","pages":"142 - 151"},"PeriodicalIF":2.0000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica Solida Sinica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10338-024-00539-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies the vibration responses of porous functionally graded (FG) thin plates with four various types of porous distribution based on the physical neutral plane by employing the peridynamic differential operator (PDDO). It is assumed that density and elastic modulus continuously vary along the transverse direction following the power law distribution for porous FG plates. The governing differential equation of free vibration for a porous rectangular FG plate and its associated boundary conditions are expressed by a Lévy-type solution based on nonlinear von Karman plate theory. Dimensionless frequencies and mode shapes are obtained after solving the characteristic equations established by PDDO. The results of the current method are validated through comparison with existing literature. The effects of geometric parameters, material properties, elastic foundation, porosity distribution, and boundary conditions on the frequency are investigated and discussed in detail. The highest fundamental dimensionless frequency occurs under SCSC boundary conditions, while the lowest is under SFSF boundary conditions. The porous FG plate with the fourth pore type, featuring high density of porosity at the top and low at the bottom, exhibits the highest fundamental frequency under SSSS, SFSF, and SCSC boundary conditions. The dimensionless frequency increases with an increase in the elastic foundation stiffness coefficient.

Abstract Image

用PDDO研究任意正交各向异性温克尔-帕斯捷尔纳克地基上多孔FG板的孔隙率对振动的影响
基于物理中性面,采用周动力微分算子(PDDO)研究了具有四种不同孔隙分布的多孔功能梯度薄板的振动响应。假设多孔FG板的密度和弹性模量沿横向呈幂律连续变化。基于非线性von Karman板理论,用l型解表示多孔矩形FG板的自由振动控制微分方程及其边界条件。通过求解PDDO建立的特征方程,得到了无量纲频率和模态振型。通过与已有文献的对比,验证了本文方法的有效性。对几何参数、材料性能、弹性基础、孔隙率分布和边界条件对频率的影响进行了详细的研究和讨论。无量纲频率在SCSC边界条件下最高,在SFSF边界条件下最低。具有第四种孔隙类型的FG板在SSSS、SFSF和SCSC边界条件下,基频最高,其孔隙密度为上高下低。无量纲频率随弹性基础刚度系数的增大而增大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Mechanica Solida Sinica
Acta Mechanica Solida Sinica 物理-材料科学:综合
CiteScore
3.80
自引率
9.10%
发文量
1088
审稿时长
9 months
期刊介绍: Acta Mechanica Solida Sinica aims to become the best journal of solid mechanics in China and a worldwide well-known one in the field of mechanics, by providing original, perspective and even breakthrough theories and methods for the research on solid mechanics. The Journal is devoted to the publication of research papers in English in all fields of solid-state mechanics and its related disciplines in science, technology and engineering, with a balanced coverage on analytical, experimental, numerical and applied investigations. Articles, Short Communications, Discussions on previously published papers, and invitation-based Reviews are published bimonthly. The maximum length of an article is 30 pages, including equations, figures and tables
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信