Comparison of Approaches to the Extraction of Mathematical Methods from Scientific Texts

IF 0.5 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Z. S. Ismagulov, D. V. Kosyakov, A. E. Guskov
{"title":"Comparison of Approaches to the Extraction of Mathematical Methods from Scientific Texts","authors":"Z. S. Ismagulov,&nbsp;D. V. Kosyakov,&nbsp;A. E. Guskov","doi":"10.3103/S0005105524700328","DOIUrl":null,"url":null,"abstract":"<p>The processes of extracting and comparing mathematical methods from scientific publications using different approaches—large language models, machine learning based classification method, and probabilistic topic modelling—are discussed. The superiority of the model obtained with probabilistic topic modelling when studying each article separately and of the large language model when studying whole projects is revealed, as well as the significant superiority of combining the results of these two approaches.</p>","PeriodicalId":42995,"journal":{"name":"AUTOMATIC DOCUMENTATION AND MATHEMATICAL LINGUISTICS","volume":"58 6","pages":"441 - 452"},"PeriodicalIF":0.5000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AUTOMATIC DOCUMENTATION AND MATHEMATICAL LINGUISTICS","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S0005105524700328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The processes of extracting and comparing mathematical methods from scientific publications using different approaches—large language models, machine learning based classification method, and probabilistic topic modelling—are discussed. The superiority of the model obtained with probabilistic topic modelling when studying each article separately and of the large language model when studying whole projects is revealed, as well as the significant superiority of combining the results of these two approaches.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
AUTOMATIC DOCUMENTATION AND MATHEMATICAL LINGUISTICS
AUTOMATIC DOCUMENTATION AND MATHEMATICAL LINGUISTICS COMPUTER SCIENCE, INFORMATION SYSTEMS-
自引率
40.00%
发文量
18
期刊介绍: Automatic Documentation and Mathematical Linguistics  is an international peer reviewed journal that covers all aspects of automation of information processes and systems, as well as algorithms and methods for automatic language analysis. Emphasis is on the practical applications of new technologies and techniques for information analysis and processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信