Tandem chemical hydrolysis and bioelectrochemical upcycling of waste polyethylene terephthalate (PET) for sustainable biobutanol and ethanol production ensuring plastics circularity†

IF 9.3 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Green Chemistry Pub Date : 2025-01-21 DOI:10.1039/d4gc04985c
Harishankar Kopperi , Vishnuvardhan Mamidi , G. Suresh , S. Venkata Mohan
{"title":"Tandem chemical hydrolysis and bioelectrochemical upcycling of waste polyethylene terephthalate (PET) for sustainable biobutanol and ethanol production ensuring plastics circularity†","authors":"Harishankar Kopperi ,&nbsp;Vishnuvardhan Mamidi ,&nbsp;G. Suresh ,&nbsp;S. Venkata Mohan","doi":"10.1039/d4gc04985c","DOIUrl":null,"url":null,"abstract":"<div><div>To establish a sustainable plastic system, it is crucial to implement effective recycling and upcycling strategies that circulate the materials within the market and prevent them from entering the ecosystems. Polyethylene terephthalate (PET), which is the most widely used fossil-derived synthetic polyester, is usually disposed as waste. Development of novel chemical upcycling technologies that can transform plastic wastes into economically viable chemicals is crucial to establish a circular plastics economy. This study delineated a methodology to combine mild chemical pretreatment and biocatalysts <em>via</em> bio-electrofermentation for the conversion of waste PET to sustainable biofuel blendstocks. Initially, PET was depolymerised to its monomers using an alkali catalyst (&gt;98% conversion efficiency), and their structural characteristics were confirmed using FT-IR, NMR (<sup>1</sup>H and <sup>13</sup>C), TGA, FESEM, XRD and XPS techniques. Furthermore, co-culturing with <em>Klebsiella</em> sp. and <em>Clostridium</em> sp. showed positive result towards TPA degradation (55%–74%) with various applied poised potentials to yield high-value bio-fuels. The electrochemical analysis highlighted the role of applied potential in the bioelectrochemical system (BES), where the +0.8 V condition consistently demonstrated a better performance across all metrics, including electron flux, substrate conversion, and product yield. The maximum yield were found to be 0.31 g L<sup>−1</sup>  for butanol and 0.23 g L<sup>−1</sup> for ethanol at +0.8 V in the BES. On the other hand, the life cycle assessment (LCA) methodology was employed to understand the environmental footprints of the studied upcycling process, and it showed a global warming potential of 1.13 ton CO<sub>2</sub> eq. per ton biofuel. While, recycling PET accounted for 1.96 ton CO<sub>2</sub> eq. and 3.06 ton CO<sub>2</sub> eq. from the ideal PET production process. Alternatively, other chemical and enzymatic PET upcycling processes had 3–7 times higher impacts. Therefore, the present work paves a new way for the upcycling of PET and makes a significant contribution to the development of a circular plastics economy.</div></div>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":"27 8","pages":"Pages 2359-2373"},"PeriodicalIF":9.3000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1463926225000718","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

To establish a sustainable plastic system, it is crucial to implement effective recycling and upcycling strategies that circulate the materials within the market and prevent them from entering the ecosystems. Polyethylene terephthalate (PET), which is the most widely used fossil-derived synthetic polyester, is usually disposed as waste. Development of novel chemical upcycling technologies that can transform plastic wastes into economically viable chemicals is crucial to establish a circular plastics economy. This study delineated a methodology to combine mild chemical pretreatment and biocatalysts via bio-electrofermentation for the conversion of waste PET to sustainable biofuel blendstocks. Initially, PET was depolymerised to its monomers using an alkali catalyst (>98% conversion efficiency), and their structural characteristics were confirmed using FT-IR, NMR (1H and 13C), TGA, FESEM, XRD and XPS techniques. Furthermore, co-culturing with Klebsiella sp. and Clostridium sp. showed positive result towards TPA degradation (55%–74%) with various applied poised potentials to yield high-value bio-fuels. The electrochemical analysis highlighted the role of applied potential in the bioelectrochemical system (BES), where the +0.8 V condition consistently demonstrated a better performance across all metrics, including electron flux, substrate conversion, and product yield. The maximum yield were found to be 0.31 g L−1  for butanol and 0.23 g L−1 for ethanol at +0.8 V in the BES. On the other hand, the life cycle assessment (LCA) methodology was employed to understand the environmental footprints of the studied upcycling process, and it showed a global warming potential of 1.13 ton CO2 eq. per ton biofuel. While, recycling PET accounted for 1.96 ton CO2 eq. and 3.06 ton CO2 eq. from the ideal PET production process. Alternatively, other chemical and enzymatic PET upcycling processes had 3–7 times higher impacts. Therefore, the present work paves a new way for the upcycling of PET and makes a significant contribution to the development of a circular plastics economy.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Green Chemistry
Green Chemistry 化学-化学综合
CiteScore
16.10
自引率
7.10%
发文量
677
审稿时长
1.4 months
期刊介绍: Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信