Youssef Ghandi, Siham El Mazouzi, Chaimaa Moukhfi, Hassan Mabrak, Ali Zourif, Rachid Fakhreddine, Malika Tridane, Said Belaaouad
{"title":"Synthesis, structural characterization, and electrochemical properties of MgNiP2O7 for energy storage applications","authors":"Youssef Ghandi, Siham El Mazouzi, Chaimaa Moukhfi, Hassan Mabrak, Ali Zourif, Rachid Fakhreddine, Malika Tridane, Said Belaaouad","doi":"10.1140/epjb/s10051-025-00879-5","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the structural, optical, and electrochemical properties of MgNiP<sub>2</sub>O<sub>7</sub>, a promising material for energy storage and catalysis applications. The compound was synthesized using a sol–gel method and characterized through X-ray diffraction, Fourier-transform infrared spectroscopy, and UV–visible spectroscopy. X-ray analysis confirmed a monoclinic crystal structure with space group P21/c. Optical studies revealed two distinct band gap energies at 1.6 eV and 2.66 eV, indicating potential for optoelectronic applications. Electrochemical characterization, including cyclic voltammetry, electrochemical impedance spectroscopy, and chronoamperometry, enhanced electrocatalytic activity, particularly for the oxygen reduction reaction. The material exhibited high current density and stable performance over time, suggesting its suitability for energy storage systems such as batteries and fuel cells. These findings highlight the multifunctional nature of MgNiP<sub>2</sub>O<sub>7</sub> and its potential significance in developing sustainable energy technologies and environmental applications.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":787,"journal":{"name":"The European Physical Journal B","volume":"98 2","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjb/s10051-025-00879-5","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the structural, optical, and electrochemical properties of MgNiP2O7, a promising material for energy storage and catalysis applications. The compound was synthesized using a sol–gel method and characterized through X-ray diffraction, Fourier-transform infrared spectroscopy, and UV–visible spectroscopy. X-ray analysis confirmed a monoclinic crystal structure with space group P21/c. Optical studies revealed two distinct band gap energies at 1.6 eV and 2.66 eV, indicating potential for optoelectronic applications. Electrochemical characterization, including cyclic voltammetry, electrochemical impedance spectroscopy, and chronoamperometry, enhanced electrocatalytic activity, particularly for the oxygen reduction reaction. The material exhibited high current density and stable performance over time, suggesting its suitability for energy storage systems such as batteries and fuel cells. These findings highlight the multifunctional nature of MgNiP2O7 and its potential significance in developing sustainable energy technologies and environmental applications.