A magnetically separable Brønsted acid catalyst for the synthesis of Bisguaiacol-F†

IF 2.7 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Komal Tarade, Chandrashekhar Rode and Sanjay Kamble
{"title":"A magnetically separable Brønsted acid catalyst for the synthesis of Bisguaiacol-F†","authors":"Komal Tarade, Chandrashekhar Rode and Sanjay Kamble","doi":"10.1039/D4NJ04624B","DOIUrl":null,"url":null,"abstract":"<p >Currently, polycarbonates, epoxy resins, and plastics are commercially made from Bisphenol-A. However, BPA-containing materials are well known for causing major health problems and have been banned in several countries. To address this concern, Bisguaiacol-F (BGF) has been developed as a safer and more sustainable alternative to Bisphenol-A. We created a novel sulfonic acid-functionalized, magnetically separable heterogeneous Brønsted acid catalyst, [Fe<small><sub>3</sub></small>O<small><sub>4</sub></small>@SiO<small><sub>2</sub></small>-(Pr)<small><sub>3</sub></small>-<em>N</em>-Bu-SO<small><sub>3</sub></small>H][HSO<small><sub>4</sub></small><small><sup>−</sup></small>], which was successfully utilized for the manufacture of BGF by condensing 37% aq. formaldehyde with two molecules of guaiacol. The main objective for this reaction was to avoid using excess guaiacol while also completing the conversion of both starting components. Surprisingly, our manufactured catalyst promotes the complete conversion of aqueous formaldehyde and guaiacol into regioisomers such as <em>pp</em>′-BGF, <em>mp</em>′-BGF and <em>op</em>′-BGF with 62%, 15%, and 6% selectivity, respectively. Our novel magnetically separable heterogeneous catalyst has improved catalytic activity in terms of starting material conversion and product distribution, which can be attributed to its unique structural characteristics. It contains a pendant –SO<small><sub>3</sub></small>H group that is connected to a lengthy butyl chain, making it conveniently accessible in the reaction. We have created the framework for a promising and environmentally aware approach to the synthesis of Bisguaiacol-F by meticulously optimizing reaction parameters such as time, temperature, reactant molar ratio, and catalyst loading. The catalyst was extensively characterized using acid–base titration, FT-IR, XRD, TGA, and NMR techniques to confirm the structure and reveal remarkable stability and activity. Notably, the catalyst demonstrated recyclability across six consecutive runs, with no noticeable reduction in its effectiveness. The catalytic activity was also tested for guaiacol condensation with a variety of aldehydes to create Bisguaiacol derivatives.</p>","PeriodicalId":95,"journal":{"name":"New Journal of Chemistry","volume":" 8","pages":" 3273-3284"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nj/d4nj04624b","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Currently, polycarbonates, epoxy resins, and plastics are commercially made from Bisphenol-A. However, BPA-containing materials are well known for causing major health problems and have been banned in several countries. To address this concern, Bisguaiacol-F (BGF) has been developed as a safer and more sustainable alternative to Bisphenol-A. We created a novel sulfonic acid-functionalized, magnetically separable heterogeneous Brønsted acid catalyst, [Fe3O4@SiO2-(Pr)3-N-Bu-SO3H][HSO4], which was successfully utilized for the manufacture of BGF by condensing 37% aq. formaldehyde with two molecules of guaiacol. The main objective for this reaction was to avoid using excess guaiacol while also completing the conversion of both starting components. Surprisingly, our manufactured catalyst promotes the complete conversion of aqueous formaldehyde and guaiacol into regioisomers such as pp′-BGF, mp′-BGF and op′-BGF with 62%, 15%, and 6% selectivity, respectively. Our novel magnetically separable heterogeneous catalyst has improved catalytic activity in terms of starting material conversion and product distribution, which can be attributed to its unique structural characteristics. It contains a pendant –SO3H group that is connected to a lengthy butyl chain, making it conveniently accessible in the reaction. We have created the framework for a promising and environmentally aware approach to the synthesis of Bisguaiacol-F by meticulously optimizing reaction parameters such as time, temperature, reactant molar ratio, and catalyst loading. The catalyst was extensively characterized using acid–base titration, FT-IR, XRD, TGA, and NMR techniques to confirm the structure and reveal remarkable stability and activity. Notably, the catalyst demonstrated recyclability across six consecutive runs, with no noticeable reduction in its effectiveness. The catalytic activity was also tested for guaiacol condensation with a variety of aldehydes to create Bisguaiacol derivatives.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
New Journal of Chemistry
New Journal of Chemistry 化学-化学综合
CiteScore
5.30
自引率
6.10%
发文量
1832
审稿时长
2 months
期刊介绍: A journal for new directions in chemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信