Impedance spectroscopy and optical properties of lanthanum-modified Bi2FeMnO6 for NTC thermistor applications

IF 5.2 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Laxmidhar Sahoo, Swayam Aryam Behera, P. Ganga Raju Achary and S. K. Parida
{"title":"Impedance spectroscopy and optical properties of lanthanum-modified Bi2FeMnO6 for NTC thermistor applications","authors":"Laxmidhar Sahoo, Swayam Aryam Behera, P. Ganga Raju Achary and S. K. Parida","doi":"10.1039/D4MA00953C","DOIUrl":null,"url":null,"abstract":"<p >The double perovskite Bi<small><sub>1.75</sub></small>La<small><sub>0.25</sub></small>FeMnO<small><sub>6</sub></small> (BLFMO) ceramic was prepared by a solid-state reaction method and characterized by different techniques such as X-ray diffraction, scanning electron microscope, energy dispersive X-ray, transmission electron microscope, and optical, dielectric, and electrical property analysis. The synthesized material has a monoclinic crystal structure with an average crystallite size of 63.7 nm and lattice strain of 0.0013, as revealed by X-ray diffraction (XRD) data. The surface morphology of the prepared sample was studied by the scanning electron microscope (SEM) technique, which shows spherical-shaped well-developed grains having clear grain boundaries with an average grain size of 55.6 μm. The EDX spectrum and elemental color mapping checked the purity and homogeneity of the sample. The transmission electron microscope (TEM) technique displayed that the particles are well connected in the synthesized material, which may be a possible reason for the better physical properties. The Brunauer–Emmet–Teller (BET) surface area was 0.371 m<small><sup>2</sup></small> g<small><sup>−1</sup></small>, with a pore volume of 7.202 cc g<small><sup>−1</sup></small> and an average pore diameter of 19.635 Å. The optical properties were studied from Fourier transform infrared (FTIR) and ultraviolet diffuse reflectance spectroscopy (UV-DRS). The FTIR spectrum revealed the vibrational modes of all the constituent elements in the sample. The direct bandgap energy of 2.71 eV was calculated from the UV-DRS spectrum, which is suitable for optoelectronic device applications. The sample exhibited high dielectric constant, low loss (from dielectric study), negative temperature coefficient of resistance behavior (from impedance study), non-Debye relaxation (from modulus study), and a thermally activated conduction mechanism (from ac conductivity study). The occurrence of Maxwell–Wagner dispersion was known from the dielectric study. The semi-circular arcs in the Nyquist and Cole–Cole's plots explained their semi-conducting nature. The resistance <em>versus</em> temperature curve indicated the semiconducting nature of the sample and its potential application as a negative temperature coefficient (NTC) thermistor. Thus, the prepared sample has unique characteristics for different applications related to optoelectronics and sensors.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":" 4","pages":" 1455-1467"},"PeriodicalIF":5.2000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ma/d4ma00953c?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ma/d4ma00953c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The double perovskite Bi1.75La0.25FeMnO6 (BLFMO) ceramic was prepared by a solid-state reaction method and characterized by different techniques such as X-ray diffraction, scanning electron microscope, energy dispersive X-ray, transmission electron microscope, and optical, dielectric, and electrical property analysis. The synthesized material has a monoclinic crystal structure with an average crystallite size of 63.7 nm and lattice strain of 0.0013, as revealed by X-ray diffraction (XRD) data. The surface morphology of the prepared sample was studied by the scanning electron microscope (SEM) technique, which shows spherical-shaped well-developed grains having clear grain boundaries with an average grain size of 55.6 μm. The EDX spectrum and elemental color mapping checked the purity and homogeneity of the sample. The transmission electron microscope (TEM) technique displayed that the particles are well connected in the synthesized material, which may be a possible reason for the better physical properties. The Brunauer–Emmet–Teller (BET) surface area was 0.371 m2 g−1, with a pore volume of 7.202 cc g−1 and an average pore diameter of 19.635 Å. The optical properties were studied from Fourier transform infrared (FTIR) and ultraviolet diffuse reflectance spectroscopy (UV-DRS). The FTIR spectrum revealed the vibrational modes of all the constituent elements in the sample. The direct bandgap energy of 2.71 eV was calculated from the UV-DRS spectrum, which is suitable for optoelectronic device applications. The sample exhibited high dielectric constant, low loss (from dielectric study), negative temperature coefficient of resistance behavior (from impedance study), non-Debye relaxation (from modulus study), and a thermally activated conduction mechanism (from ac conductivity study). The occurrence of Maxwell–Wagner dispersion was known from the dielectric study. The semi-circular arcs in the Nyquist and Cole–Cole's plots explained their semi-conducting nature. The resistance versus temperature curve indicated the semiconducting nature of the sample and its potential application as a negative temperature coefficient (NTC) thermistor. Thus, the prepared sample has unique characteristics for different applications related to optoelectronics and sensors.

Abstract Image

用于 NTC 热敏电阻的镧改性 Bi2FeMnO6 的阻抗光谱和光学特性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Advances
Materials Advances MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.60
自引率
2.00%
发文量
665
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信