Assessing dual drug 9-hydroxymethyl noscapine and telmisartan-loaded stearic acid nanoparticles against (H1299) non-small cell lung cancer and their mechanistic interaction with bovine serum albumin†
{"title":"Assessing dual drug 9-hydroxymethyl noscapine and telmisartan-loaded stearic acid nanoparticles against (H1299) non-small cell lung cancer and their mechanistic interaction with bovine serum albumin†","authors":"Snigdha Singh, Shubham Sewariya, Tanya Goel, Sagar Panchal, Aarushi Singh, Shrikant Kukreti, Manisha Tiwari and Ramesh Chandra","doi":"10.1039/D4MA00958D","DOIUrl":null,"url":null,"abstract":"<p >Solid lipid nanoparticles are appealing to the scientific community owing to their expedient and versatile nature as systems for drug delivery and therefore are being used to treat a variety of illnesses. With parallel line of thought, herein, we have reported the synthesis and characterisation of dual drug stearic acid-loaded solid lipid nanoparticles and screened their efficacy in non-small cell lung cancer. The desired nanoparticles, namely 9-CH<small><sub>2</sub></small>OH Nos-Tel-SLNs, were prepared using the solvent diffusion method. TEM and AFM images revealed that the nanoparticles have spherical form with a mean size of 36.6 nm. The nanostructures' zeta potential and hydrodynamic size were found to be −36.23 mV and ∼406.8 nm, respectively. From RP-HPLC, the noscapine and telmisartan loaded in the nanoparticles were found to be 1.86% and 1.97% respectively. Additionally, we have probed into the interaction of BSA with the synthesized nanocomposite using UV-visible, fluorescence and CD spectroscopic techniques along with computational techniques, namely molecular docking, molecular dynamic simulations and MM-PBSA/GBSA calculations. From the fluorescence quenching of BSA upon interaction with the SLNs, we deduced that a stable ground-state complex between 9-CH<small><sub>2</sub></small>OH Nos-Tel-SLN and BSA was formed. Similarly, <em>in silico</em> evaluation indicated formation of a stable dual drug complex with BSA with telmisartan being more compatible for binding to the protein. To assess further, we also evaluated the anticancer property of 9-CH<small><sub>2</sub></small>OH noscapine, telmisartan and 9-CH<small><sub>2</sub></small>OH Nos-Tel-SLN against H1299 lung cancer cell line using MTT assay and the calculated IC<small><sub>50</sub></small> of 9-CH<small><sub>2</sub></small>OH Nos-Tel-SLN was 186 μg mL<small><sup>−1</sup></small>. Overall, based on the promising results in this research, such SLNs could be a promising drug delivery tool and can be crucial in the conversion of potential anticancer drugs to marketed anticancer drugs in the near future.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":" 4","pages":" 1364-1378"},"PeriodicalIF":5.2000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ma/d4ma00958d?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ma/d4ma00958d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Solid lipid nanoparticles are appealing to the scientific community owing to their expedient and versatile nature as systems for drug delivery and therefore are being used to treat a variety of illnesses. With parallel line of thought, herein, we have reported the synthesis and characterisation of dual drug stearic acid-loaded solid lipid nanoparticles and screened their efficacy in non-small cell lung cancer. The desired nanoparticles, namely 9-CH2OH Nos-Tel-SLNs, were prepared using the solvent diffusion method. TEM and AFM images revealed that the nanoparticles have spherical form with a mean size of 36.6 nm. The nanostructures' zeta potential and hydrodynamic size were found to be −36.23 mV and ∼406.8 nm, respectively. From RP-HPLC, the noscapine and telmisartan loaded in the nanoparticles were found to be 1.86% and 1.97% respectively. Additionally, we have probed into the interaction of BSA with the synthesized nanocomposite using UV-visible, fluorescence and CD spectroscopic techniques along with computational techniques, namely molecular docking, molecular dynamic simulations and MM-PBSA/GBSA calculations. From the fluorescence quenching of BSA upon interaction with the SLNs, we deduced that a stable ground-state complex between 9-CH2OH Nos-Tel-SLN and BSA was formed. Similarly, in silico evaluation indicated formation of a stable dual drug complex with BSA with telmisartan being more compatible for binding to the protein. To assess further, we also evaluated the anticancer property of 9-CH2OH noscapine, telmisartan and 9-CH2OH Nos-Tel-SLN against H1299 lung cancer cell line using MTT assay and the calculated IC50 of 9-CH2OH Nos-Tel-SLN was 186 μg mL−1. Overall, based on the promising results in this research, such SLNs could be a promising drug delivery tool and can be crucial in the conversion of potential anticancer drugs to marketed anticancer drugs in the near future.