Dan Sadot;Ido Attia;Ohad Balasiano;Isaac Jonas;Yarden Yalinevich;Gil Alin;Elimelech Keller;Hamutal Shalom;Eyal Wohlgemuth
{"title":"Photonic Layer Security in High-Speed Optical Communications","authors":"Dan Sadot;Ido Attia;Ohad Balasiano;Isaac Jonas;Yarden Yalinevich;Gil Alin;Elimelech Keller;Hamutal Shalom;Eyal Wohlgemuth","doi":"10.1109/JLT.2024.3520900","DOIUrl":null,"url":null,"abstract":"The capability to form a photonic shield by using a unique all-optical transmission scheme incorporating multi-THz coherent spreading, spectral phase encoding (SPE), and negative optical signal-to-noise ratio (OSNR) completely prevents offline deciphering of captured data-in-transit. This photonic shield scheme provides an ultimate solution to the “harvest-now, decrypt later” threat by eliminating unauthorised recording. Thus, no raw data is available for any post-processing, including by quantum computers. Both the full line rate payload and the asymmetric key exchange, are transmitted through the secured channel. This work presents an industry-level demonstration, including real-time client data transmission and seamlessly continuously changing spectral phase encoding (SPE) photonic keys. A 100 Gbps DP-QPSK signal and a 200 Gbps DP-16QAM link are established over 80 km of standard single mode fiber (SSMF).","PeriodicalId":16144,"journal":{"name":"Journal of Lightwave Technology","volume":"43 4","pages":"1671-1677"},"PeriodicalIF":4.1000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10812060","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Lightwave Technology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10812060/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The capability to form a photonic shield by using a unique all-optical transmission scheme incorporating multi-THz coherent spreading, spectral phase encoding (SPE), and negative optical signal-to-noise ratio (OSNR) completely prevents offline deciphering of captured data-in-transit. This photonic shield scheme provides an ultimate solution to the “harvest-now, decrypt later” threat by eliminating unauthorised recording. Thus, no raw data is available for any post-processing, including by quantum computers. Both the full line rate payload and the asymmetric key exchange, are transmitted through the secured channel. This work presents an industry-level demonstration, including real-time client data transmission and seamlessly continuously changing spectral phase encoding (SPE) photonic keys. A 100 Gbps DP-QPSK signal and a 200 Gbps DP-16QAM link are established over 80 km of standard single mode fiber (SSMF).
期刊介绍:
The Journal of Lightwave Technology is comprised of original contributions, both regular papers and letters, covering work in all aspects of optical guided-wave science, technology, and engineering. Manuscripts are solicited which report original theoretical and/or experimental results which advance the technological base of guided-wave technology. Tutorial and review papers are by invitation only. Topics of interest include the following: fiber and cable technologies, active and passive guided-wave componentry (light sources, detectors, repeaters, switches, fiber sensors, etc.); integrated optics and optoelectronics; and systems, subsystems, new applications and unique field trials. System oriented manuscripts should be concerned with systems which perform a function not previously available, out-perform previously established systems, or represent enhancements in the state of the art in general.