Adaptive Routing Mechanism for LEO Satellite Network Based on Control Domain Partition

IF 5.3 2区 计算机科学 Q1 TELECOMMUNICATIONS
Puning Zhang;Ziyun Xian;Mingjun Liao;Haiyun Huang;Junyan Yang
{"title":"Adaptive Routing Mechanism for LEO Satellite Network Based on Control Domain Partition","authors":"Puning Zhang;Ziyun Xian;Mingjun Liao;Haiyun Huang;Junyan Yang","doi":"10.1109/TGCN.2024.3425458","DOIUrl":null,"url":null,"abstract":"Low Earth Orbit (LEO) satellite network has the characteristics of low delay, low propagation loss, high bandwidth, and seamless coverage, which is the cornerstone of space-air-ground integrated network. However, the complex topology and time-varying link state of LEO lead to extremely unstable data routing. Existing routing research faces the challenges of large link information update delay, high routing table storage, and query overhead, which seriously affect satellite data transmission, onboard computing, and storage efficiency. To address the above issues, an adaptive routing mechanism based on control domain partition is proposed, considering the dynamic time-varying characteristics of LEO satellite constellation topology and inter-satellite link. Specifically, a non-dominated sorting-based control domain partition architecture is designed to manage the satellite domain for reducing control delay and improving link information update efficiency. Then a distributed routing method for control domain division is proposed to sense the link status of adjacent control domains rather than the entire satellite network, so as to alleviate the problems of high storage and query complexity and slow update of link information. Furthermore, a link situation aware routing decision-making method is devised to accurately perceive the link situation and achieve optimal path decision-making. The simulation results demonstrate that the proposed mechanism respectively improves the network performance by about 12%, 22%, and 14% in terms of end-to-end average delay, packet loss rate, and throughput.","PeriodicalId":13052,"journal":{"name":"IEEE Transactions on Green Communications and Networking","volume":"9 1","pages":"70-82"},"PeriodicalIF":5.3000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Green Communications and Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10589577/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Low Earth Orbit (LEO) satellite network has the characteristics of low delay, low propagation loss, high bandwidth, and seamless coverage, which is the cornerstone of space-air-ground integrated network. However, the complex topology and time-varying link state of LEO lead to extremely unstable data routing. Existing routing research faces the challenges of large link information update delay, high routing table storage, and query overhead, which seriously affect satellite data transmission, onboard computing, and storage efficiency. To address the above issues, an adaptive routing mechanism based on control domain partition is proposed, considering the dynamic time-varying characteristics of LEO satellite constellation topology and inter-satellite link. Specifically, a non-dominated sorting-based control domain partition architecture is designed to manage the satellite domain for reducing control delay and improving link information update efficiency. Then a distributed routing method for control domain division is proposed to sense the link status of adjacent control domains rather than the entire satellite network, so as to alleviate the problems of high storage and query complexity and slow update of link information. Furthermore, a link situation aware routing decision-making method is devised to accurately perceive the link situation and achieve optimal path decision-making. The simulation results demonstrate that the proposed mechanism respectively improves the network performance by about 12%, 22%, and 14% in terms of end-to-end average delay, packet loss rate, and throughput.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Green Communications and Networking
IEEE Transactions on Green Communications and Networking Computer Science-Computer Networks and Communications
CiteScore
9.30
自引率
6.20%
发文量
181
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信