GAS: DVFS-Driven Energy Efficiency Approach for Latency-Guaranteed Edge Computing Microservices

IF 5.3 2区 计算机科学 Q1 TELECOMMUNICATIONS
Zouhir Bellal;Laaziz Lahlou;Nadjia Kara;Ibtissam El Khayat
{"title":"GAS: DVFS-Driven Energy Efficiency Approach for Latency-Guaranteed Edge Computing Microservices","authors":"Zouhir Bellal;Laaziz Lahlou;Nadjia Kara;Ibtissam El Khayat","doi":"10.1109/TGCN.2024.3420957","DOIUrl":null,"url":null,"abstract":"Edge computing-based microservices (ECM) are pivotal infrastructure components for latency-critical applications such as Virtual Reality/Augmented Reality (VR/AR) and the Internet of Things (IoT). ECM involves strategically deploying microservices at the network’s edge to fulfill the low latency needs of modern applications. However, achieving efficient resource and energy consumption while meeting the latency requirement in the ECM environment remains challenging. Dynamic Voltage and Frequency Scaling (DVFS) is a common technique to address this issue. It adjusts the CPU frequency and voltage to balance energy cost and performance. However, selecting the optimal CPU frequency depends on the nature of the microservice workload (e.g., CPU-bound, memory-bound, or mixed). Moreover, various microservices with different latency requirement can be deployed on the same edge node. This makes the DVFS application extremely challenging, particularly for a chip-wide DVFS implementation for which CPU cores operate at the same frequency and voltage. To this end, we propose GAS, enerGy Aware microServices edge computing framework, which enables CPU frequency scaling to meet diverse microservice latency requirement with the minimum energy cost. Our evaluation indicates that our CPU scaling policy decreases energy consumption by 5% to 23% compared to Linux governors while maintaining latency requirement and significantly contributing to sustainable edge computing.","PeriodicalId":13052,"journal":{"name":"IEEE Transactions on Green Communications and Networking","volume":"9 1","pages":"108-124"},"PeriodicalIF":5.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Green Communications and Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10578041/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Edge computing-based microservices (ECM) are pivotal infrastructure components for latency-critical applications such as Virtual Reality/Augmented Reality (VR/AR) and the Internet of Things (IoT). ECM involves strategically deploying microservices at the network’s edge to fulfill the low latency needs of modern applications. However, achieving efficient resource and energy consumption while meeting the latency requirement in the ECM environment remains challenging. Dynamic Voltage and Frequency Scaling (DVFS) is a common technique to address this issue. It adjusts the CPU frequency and voltage to balance energy cost and performance. However, selecting the optimal CPU frequency depends on the nature of the microservice workload (e.g., CPU-bound, memory-bound, or mixed). Moreover, various microservices with different latency requirement can be deployed on the same edge node. This makes the DVFS application extremely challenging, particularly for a chip-wide DVFS implementation for which CPU cores operate at the same frequency and voltage. To this end, we propose GAS, enerGy Aware microServices edge computing framework, which enables CPU frequency scaling to meet diverse microservice latency requirement with the minimum energy cost. Our evaluation indicates that our CPU scaling policy decreases energy consumption by 5% to 23% compared to Linux governors while maintaining latency requirement and significantly contributing to sustainable edge computing.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Green Communications and Networking
IEEE Transactions on Green Communications and Networking Computer Science-Computer Networks and Communications
CiteScore
9.30
自引率
6.20%
发文量
181
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信