K. Sakai;J. S. Adams;S. R. Bandler;J. A. Chervenak;R. S. Cumbee;F. M. Finkbeiner;J. D. Fuhrman;S. V. Hull;R. L. Kelley;C. A. Kilbourne;H. Muramatsu;F. S. Porter;S. J. Smith;N. A. Wakeham;E. J. Wassell
{"title":"Real-Time Pulse Processing on the Time-Division Multiplex Readout Electronics of the Transition Edge Sensor for the Line Emission Mapper (LEM)","authors":"K. Sakai;J. S. Adams;S. R. Bandler;J. A. Chervenak;R. S. Cumbee;F. M. Finkbeiner;J. D. Fuhrman;S. V. Hull;R. L. Kelley;C. A. Kilbourne;H. Muramatsu;F. S. Porter;S. J. Smith;N. A. Wakeham;E. J. Wassell","doi":"10.1109/TASC.2025.3534153","DOIUrl":null,"url":null,"abstract":"We are developing a real-time X-ray pulse processor for the Line Emission Mapper (LEM) mission, a NASA X-ray probe concept for imaging and spectroscopy in the 0.2 to 2 keV range. The main detector is a hybrid Transition Edge Sensor (TES) array with a 33' outer array with “Hydra” multiplexing and a 7' × 7' inner subarray. The ∼4,000 TES sensors are read out using time-division multiplexing (TDM) technology. We are developing room-temperature digital readout electronics based on laboratory TDM electronics, where all X-ray pulses are processed in real-time to reduce the size of the data transmission. The process includes pulse triggering, grading, extraction, and optimal filtering performed in the FPGA of the TDM column electronics. In this paper we describe the real-time pulse processing firmware for a LEM flight-like prototype electronics and demonstrate count rate capability. We also demonstrate that it provides identical performance compared to conventional offline pulse-processing.","PeriodicalId":13104,"journal":{"name":"IEEE Transactions on Applied Superconductivity","volume":"35 5","pages":"1-5"},"PeriodicalIF":1.7000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Applied Superconductivity","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10854877/","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
We are developing a real-time X-ray pulse processor for the Line Emission Mapper (LEM) mission, a NASA X-ray probe concept for imaging and spectroscopy in the 0.2 to 2 keV range. The main detector is a hybrid Transition Edge Sensor (TES) array with a 33' outer array with “Hydra” multiplexing and a 7' × 7' inner subarray. The ∼4,000 TES sensors are read out using time-division multiplexing (TDM) technology. We are developing room-temperature digital readout electronics based on laboratory TDM electronics, where all X-ray pulses are processed in real-time to reduce the size of the data transmission. The process includes pulse triggering, grading, extraction, and optimal filtering performed in the FPGA of the TDM column electronics. In this paper we describe the real-time pulse processing firmware for a LEM flight-like prototype electronics and demonstrate count rate capability. We also demonstrate that it provides identical performance compared to conventional offline pulse-processing.
期刊介绍:
IEEE Transactions on Applied Superconductivity (TAS) contains articles on the applications of superconductivity and other relevant technology. Electronic applications include analog and digital circuits employing thin films and active devices such as Josephson junctions. Large scale applications include magnets for power applications such as motors and generators, for magnetic resonance, for accelerators, and cable applications such as power transmission.