{"title":"Global smooth radially symmetric solutions to a multidimensional radiation hydrodynamics model","authors":"Huijiang Zhao , Boran Zhu","doi":"10.1016/j.jde.2025.02.044","DOIUrl":null,"url":null,"abstract":"<div><div>The motion of a compressible inviscid radiative flow can be described by the radiative Euler equations, which consists of the Euler system coupled with a Poisson equation for the radiative heat flux through the energy equation. Although solutions of the compressible Euler system will generally develop singularity no matter how smooth and small the initial data are, it is believed that the radiation effect does imply some dissipative mechanism, which can guarantee the global regularity of the solutions of the radiative Euler equations at least for small initial data.</div><div>Such an expectation was rigorously justified for the one-dimensional case, as for the multidimensional case, to the best of our knowledge, no result was available up to now. The main purpose of this paper is to show that the initial-boundary value problem of such a radiative Euler equation in a three-dimensional bounded concentric annular domain does admit a unique global smooth radially symmetric solution provided that the initial data is sufficiently small.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"429 ","pages":"Pages 123-156"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625001639","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The motion of a compressible inviscid radiative flow can be described by the radiative Euler equations, which consists of the Euler system coupled with a Poisson equation for the radiative heat flux through the energy equation. Although solutions of the compressible Euler system will generally develop singularity no matter how smooth and small the initial data are, it is believed that the radiation effect does imply some dissipative mechanism, which can guarantee the global regularity of the solutions of the radiative Euler equations at least for small initial data.
Such an expectation was rigorously justified for the one-dimensional case, as for the multidimensional case, to the best of our knowledge, no result was available up to now. The main purpose of this paper is to show that the initial-boundary value problem of such a radiative Euler equation in a three-dimensional bounded concentric annular domain does admit a unique global smooth radially symmetric solution provided that the initial data is sufficiently small.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics