{"title":"Prodi–Serrin condition for 3D MHD equations via one directional derivative of velocity and magnetic fields","authors":"Chenyin Qian , Shiyi Su , Ting Zhang","doi":"10.1016/j.jde.2025.02.033","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we consider regularity conditions on weak solutions of 3D MHD equations with viscosity coefficient <em>μ</em> and resistivity coefficient <em>ν</em> being not equal. The main contribution of the present result is to establish the Prodi-Serrin regularity criterion in the case of <span><math><mi>μ</mi><mo>≠</mo><mi>ν</mi></math></span>. More precisely, it shows that the weak solution of the 3D MHD equations is regular if <span><math><msub><mrow><mo>∂</mo></mrow><mrow><mn>3</mn></mrow></msub><mi>u</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mn>1</mn></mrow></msup><mo>(</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>;</mo><msup><mrow><mi>L</mi></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo><mo>)</mo></math></span> and <span><math><msub><mrow><mo>∂</mo></mrow><mrow><mn>3</mn></mrow></msub><mi>b</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mn>1</mn></mrow></msup><mo>(</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>;</mo><msup><mrow><mi>L</mi></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo><mo>)</mo></math></span> with <span><math><mfrac><mrow><mn>2</mn></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></mfrac><mo>+</mo><mfrac><mrow><mn>3</mn></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>2</mn></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></mfrac><mo>+</mo><mfrac><mrow><mn>3</mn></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></mfrac><mo>=</mo><mn>2</mn></math></span>, <span><math><msub><mrow><mi>q</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><mo>(</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mn>2</mn><mo>]</mo><mo>,</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∈</mo><mo>(</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mo>∞</mo><mo>]</mo></math></span> or <span><math><msub><mrow><mi>q</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><mo>(</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mo>∞</mo><mo>]</mo><mo>,</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∈</mo><mo>(</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mn>2</mn><mo>]</mo></math></span>. Moreover, if <span><math><mi>μ</mi><mo>=</mo><mi>ν</mi></math></span>, then the range of <span><math><msub><mrow><mi>q</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> can be improved to <span><math><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo><</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≤</mo><mo>∞</mo></math></span>. This is an alternative new Prodi-Serrin regularity criterion for the 3D MHD equations by comparing with the result of the Chen et al. (2022) <span><span>[11]</span></span>.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"429 ","pages":"Pages 88-122"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625001524","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we consider regularity conditions on weak solutions of 3D MHD equations with viscosity coefficient μ and resistivity coefficient ν being not equal. The main contribution of the present result is to establish the Prodi-Serrin regularity criterion in the case of . More precisely, it shows that the weak solution of the 3D MHD equations is regular if and with , or . Moreover, if , then the range of can be improved to . This is an alternative new Prodi-Serrin regularity criterion for the 3D MHD equations by comparing with the result of the Chen et al. (2022) [11].
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics