Transition metal dopants modulate the band gap and electronic structure of corrugated graphitic carbon nitride

Edgar Clyde R. Lopez
{"title":"Transition metal dopants modulate the band gap and electronic structure of corrugated graphitic carbon nitride","authors":"Edgar Clyde R. Lopez","doi":"10.1016/j.nxmate.2025.100550","DOIUrl":null,"url":null,"abstract":"<div><div>The rational selection of dopants for graphitic carbon nitride (GCN) is essential for tailoring its electronic properties, enabling advancements in photocatalysis, energy conversion, and electronics. Modifying the band gap, valence band edge (VBE), and conduction band edge (CBE) of GCN can enhance its light absorption capabilities, with narrower gaps improving visible light absorption and wider gaps increasing stability while lowering electron-hole recombination rates. Transition metals serve as effective dopants due to their distinct electronic configurations, allowing precise tuning of GCN's electronic structure. Early transition metals like titanium and vanadium reduce the band gap, enhancing conductivity for catalytic applications. Mid-transition metals such as iron and cobalt maintain structural integrity while optimizing electron mobility, ideal for stable catalytic systems. Late transition metals, including palladium and silver, provide highly conductive pathways with significant band gap reduction, suitable for high-performance catalysis and electronics. Strategic dopant selection, considering both functionality and sustainability, is vital for achieving high-performing, economically viable materials. Overall, the findings pave the way for tailored materials that address challenges in energy storage and environmental sustainability, highlighting the potential of doped GCN as a versatile candidate for innovative electronic and catalytic systems.</div></div>","PeriodicalId":100958,"journal":{"name":"Next Materials","volume":"8 ","pages":"Article 100550"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949822825000681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The rational selection of dopants for graphitic carbon nitride (GCN) is essential for tailoring its electronic properties, enabling advancements in photocatalysis, energy conversion, and electronics. Modifying the band gap, valence band edge (VBE), and conduction band edge (CBE) of GCN can enhance its light absorption capabilities, with narrower gaps improving visible light absorption and wider gaps increasing stability while lowering electron-hole recombination rates. Transition metals serve as effective dopants due to their distinct electronic configurations, allowing precise tuning of GCN's electronic structure. Early transition metals like titanium and vanadium reduce the band gap, enhancing conductivity for catalytic applications. Mid-transition metals such as iron and cobalt maintain structural integrity while optimizing electron mobility, ideal for stable catalytic systems. Late transition metals, including palladium and silver, provide highly conductive pathways with significant band gap reduction, suitable for high-performance catalysis and electronics. Strategic dopant selection, considering both functionality and sustainability, is vital for achieving high-performing, economically viable materials. Overall, the findings pave the way for tailored materials that address challenges in energy storage and environmental sustainability, highlighting the potential of doped GCN as a versatile candidate for innovative electronic and catalytic systems.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信