Van-Phu Vu , Nguyen Thi Le Na , Minh Thuy Luong , Nguyen Duc Toan , Ngoc Anh Tran Thi , Thi Thu Nguyen , Manh Ha Hoang , Long Duc Nguyen , Khanh Ly Dao , Thanh Binh Nguyen , Cong Doanh Sai
{"title":"Visible light-driven GO/Ag-ZnO ternary composites for enhanced photocatalytic degradation of amoxicillin and their antibacterial potential","authors":"Van-Phu Vu , Nguyen Thi Le Na , Minh Thuy Luong , Nguyen Duc Toan , Ngoc Anh Tran Thi , Thi Thu Nguyen , Manh Ha Hoang , Long Duc Nguyen , Khanh Ly Dao , Thanh Binh Nguyen , Cong Doanh Sai","doi":"10.1016/j.nxmate.2025.100544","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a simple process for fabricating a seri composite x%GO/Ag-ZnO (x: 0; 3; 5; 10; 15; 20) structure for applications in antibiotic degradation and antibacterial activity. The samples' morphology, structure, and optical properties are analyzed using scanning electron microscopy (SEM), X-ray diffraction (XRD), and UV-Vis absorption spectroscopy techniques. The antibiotic degradation ability of the fabricated samples is evaluated under visible light. The results show that the photocatalytic activity is influenced by the GO concentration in the samples. The best photocatalytic activity is observed in the 10 %GO/Ag-ZnO sample, achieving an antibiotic degradation efficiency of up to 85 % after 90 min of illumination. The fabricated sample demonstrates reusability for antibiotic degradation over five cycles, maintaining an efficiency of more than 78 %. Notably, the GO/Ag-ZnO sample exhibits superior antibacterial activity compared to the Ag-ZnO sample at the same concentration.</div></div>","PeriodicalId":100958,"journal":{"name":"Next Materials","volume":"8 ","pages":"Article 100544"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949822825000620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents a simple process for fabricating a seri composite x%GO/Ag-ZnO (x: 0; 3; 5; 10; 15; 20) structure for applications in antibiotic degradation and antibacterial activity. The samples' morphology, structure, and optical properties are analyzed using scanning electron microscopy (SEM), X-ray diffraction (XRD), and UV-Vis absorption spectroscopy techniques. The antibiotic degradation ability of the fabricated samples is evaluated under visible light. The results show that the photocatalytic activity is influenced by the GO concentration in the samples. The best photocatalytic activity is observed in the 10 %GO/Ag-ZnO sample, achieving an antibiotic degradation efficiency of up to 85 % after 90 min of illumination. The fabricated sample demonstrates reusability for antibiotic degradation over five cycles, maintaining an efficiency of more than 78 %. Notably, the GO/Ag-ZnO sample exhibits superior antibacterial activity compared to the Ag-ZnO sample at the same concentration.