Photocatalytic properties of SrTiO₃ – Impact of (Co-)doping with Sc, Cr, Co, Ir and La

Azeem Ghulam Nabi , Maryam Hayat , Shahbaz Khan , Salman Nazir , Akhtar Hussain , Aman-ur-Rehman , Gregory A. Chass , Devis Di Tommaso
{"title":"Photocatalytic properties of SrTiO₃ – Impact of (Co-)doping with Sc, Cr, Co, Ir and La","authors":"Azeem Ghulam Nabi ,&nbsp;Maryam Hayat ,&nbsp;Shahbaz Khan ,&nbsp;Salman Nazir ,&nbsp;Akhtar Hussain ,&nbsp;Aman-ur-Rehman ,&nbsp;Gregory A. Chass ,&nbsp;Devis Di Tommaso","doi":"10.1016/j.nxmate.2025.100545","DOIUrl":null,"url":null,"abstract":"<div><div>The optical properties of doped SrTiO<sub>3</sub> are crucial for solar energy conversion due to their correlation with their efficacy to absorb and convert sunlight to energy. In this study, the impact of La, Co, Cr, Sc, and Ir substitutions on the structural, optical, electrical, and photocatalytic properties of SrTiO<sub>3</sub> were investigated by a series density functional theory (DFT) calculation. Analyses primarily initially focused on the effects of doping and co-doping with Lanthanum (La) followed by systematic investigations of the impact of transition metal (TM) doping with Scandium Chromium, Cobalt and Iridium (Sc, Cr, Co, Ir) an finally co-doping with La and the TM elements. Co-doping leads to a reduction in the bandgap energy and a shift in the bandgap region, making the material more suitable for photo-catalysis. Structures singly-substituted with La, Sc, Cr, Co, and Ir primarily absorbed light in the ultraviolet region, which limits their use in light-based devices. However, SrTiO₃ systems co-doped with La-Ir exhibited significant absorption in the visible region (∼400–750 nm). The co-doped SrTiO₃ maximizes solar light utilization, making it well-suited for applications such as solar cells. Our study sheds light into the optical properties of doped SrTiO₃, highlighting its potential for practical use in solar energy conversion.</div></div>","PeriodicalId":100958,"journal":{"name":"Next Materials","volume":"8 ","pages":"Article 100545"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949822825000632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The optical properties of doped SrTiO3 are crucial for solar energy conversion due to their correlation with their efficacy to absorb and convert sunlight to energy. In this study, the impact of La, Co, Cr, Sc, and Ir substitutions on the structural, optical, electrical, and photocatalytic properties of SrTiO3 were investigated by a series density functional theory (DFT) calculation. Analyses primarily initially focused on the effects of doping and co-doping with Lanthanum (La) followed by systematic investigations of the impact of transition metal (TM) doping with Scandium Chromium, Cobalt and Iridium (Sc, Cr, Co, Ir) an finally co-doping with La and the TM elements. Co-doping leads to a reduction in the bandgap energy and a shift in the bandgap region, making the material more suitable for photo-catalysis. Structures singly-substituted with La, Sc, Cr, Co, and Ir primarily absorbed light in the ultraviolet region, which limits their use in light-based devices. However, SrTiO₃ systems co-doped with La-Ir exhibited significant absorption in the visible region (∼400–750 nm). The co-doped SrTiO₃ maximizes solar light utilization, making it well-suited for applications such as solar cells. Our study sheds light into the optical properties of doped SrTiO₃, highlighting its potential for practical use in solar energy conversion.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信