Simulating a sustainable biorefinery process as autonomous learning tool for collaborative work in the chemical engineering degree

IF 3.5 2区 教育学 Q1 EDUCATION, SCIENTIFIC DISCIPLINES
Juana M. Rosas , M. Carmen Gutiérrez , Manuel Peñas-Garzón , Irene Moreno-Medina , Ramiro Ruiz-Rosas , M. Ángeles Martín , José Rodríguez-Mirasol , Tomás Cordero
{"title":"Simulating a sustainable biorefinery process as autonomous learning tool for collaborative work in the chemical engineering degree","authors":"Juana M. Rosas ,&nbsp;M. Carmen Gutiérrez ,&nbsp;Manuel Peñas-Garzón ,&nbsp;Irene Moreno-Medina ,&nbsp;Ramiro Ruiz-Rosas ,&nbsp;M. Ángeles Martín ,&nbsp;José Rodríguez-Mirasol ,&nbsp;Tomás Cordero","doi":"10.1016/j.ece.2025.02.001","DOIUrl":null,"url":null,"abstract":"<div><div>To improve the skills of the students in the Sustainable Refinery and Biorefinery subject of the Degree in Chemical Engineering, a learning tool has been implemented based on collaborative work, autonomy, and the use of information and communication technologies (ICT). This project includes the development of simulations that allow students to apply the learned concepts in a practical way, which were then assessed with the help of a specific rubric created for this purpose. Once the instrument was designed and implemented, its evaluation was carried out using a specific questionnaire. The results indicated that the use of simulation software in the classroom (with a 95 % acceptance rate among students) had a positive impact on the students, facilitating the comprehension of the content (scored a 3.9 out of 1–5 Likert scale), supporting their academic performance (close to 10 % average increase in the student qualifications), and fostering their professional profile in the field of Chemical Engineering (as supported by the rating of 4 out of 1–5 Likert scale). In addition, the constructive feedback provided by the students enabled the teaching team to identify areas for improvement and to consider future changes and updates to the pedagogical approach (as the organization of the seminars). Therefore, the use of different chemical process simulation software packages resulted in an essential strategy to develop the autonomous learning of the students and constituted a successful methodological tool, also preparing them to better meet the challenges of the industrial sector.</div></div>","PeriodicalId":48509,"journal":{"name":"Education for Chemical Engineers","volume":"51 ","pages":"Pages 34-42"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Education for Chemical Engineers","FirstCategoryId":"95","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1749772825000053","RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
引用次数: 0

Abstract

To improve the skills of the students in the Sustainable Refinery and Biorefinery subject of the Degree in Chemical Engineering, a learning tool has been implemented based on collaborative work, autonomy, and the use of information and communication technologies (ICT). This project includes the development of simulations that allow students to apply the learned concepts in a practical way, which were then assessed with the help of a specific rubric created for this purpose. Once the instrument was designed and implemented, its evaluation was carried out using a specific questionnaire. The results indicated that the use of simulation software in the classroom (with a 95 % acceptance rate among students) had a positive impact on the students, facilitating the comprehension of the content (scored a 3.9 out of 1–5 Likert scale), supporting their academic performance (close to 10 % average increase in the student qualifications), and fostering their professional profile in the field of Chemical Engineering (as supported by the rating of 4 out of 1–5 Likert scale). In addition, the constructive feedback provided by the students enabled the teaching team to identify areas for improvement and to consider future changes and updates to the pedagogical approach (as the organization of the seminars). Therefore, the use of different chemical process simulation software packages resulted in an essential strategy to develop the autonomous learning of the students and constituted a successful methodological tool, also preparing them to better meet the challenges of the industrial sector.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.80
自引率
17.90%
发文量
30
审稿时长
31 days
期刊介绍: Education for Chemical Engineers was launched in 2006 with a remit to publisheducation research papers, resource reviews and teaching and learning notes. ECE is targeted at chemical engineering academics and educators, discussing the ongoingchanges and development in chemical engineering education. This international title publishes papers from around the world, creating a global network of chemical engineering academics. Papers demonstrating how educational research results can be applied to chemical engineering education are particularly welcome, as are the accounts of research work that brings new perspectives to established principles, highlighting unsolved problems or indicating direction for future research relevant to chemical engineering education. Core topic areas: -Assessment- Accreditation- Curriculum development and transformation- Design- Diversity- Distance education-- E-learning Entrepreneurship programs- Industry-academic linkages- Benchmarking- Lifelong learning- Multidisciplinary programs- Outreach from kindergarten to high school programs- Student recruitment and retention and transition programs- New technology- Problem-based learning- Social responsibility and professionalism- Teamwork- Web-based learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信