Karl Töpperwien , Guillaume Vignat , Alexandra J. Feinberg , Conner Daube , Mitchell W. Alton , Edward C. Fortner , Manjula R. Canagaratna , Matthias F. Kling , Mary Johnson , Kari Nadeau , Scott Herndon , John T. Jayne , Matthias Ihme
{"title":"Burn parameters affect PAH emissions at conditions relevant for prescribed fires","authors":"Karl Töpperwien , Guillaume Vignat , Alexandra J. Feinberg , Conner Daube , Mitchell W. Alton , Edward C. Fortner , Manjula R. Canagaratna , Matthias F. Kling , Mary Johnson , Kari Nadeau , Scott Herndon , John T. Jayne , Matthias Ihme","doi":"10.1016/j.apr.2025.102438","DOIUrl":null,"url":null,"abstract":"<div><div>Wildfire smoke is a health hazard as it contains carcinogenic volatile compounds and fine particulate matter. In particular, exposure to polycyclic aromatic hydrocarbons (PAHs) is a major concern, since these compounds have been recognized as important contributors to the overall carcinogenic risk. In this work, gas and particle-phase PAH emissions from combustion of Eastern White Pine (<em>Pinus strobus</em>) were quantified using time-of-flight mass spectrometry over a range of burn conditions representative of wildfires and prescribed fires, including fuel moisture, heat flux, and oxygen concentration. We found that changing the burn environment lead to a variability of up to 77% in phenanthrene/anthracene emissions. This could explain a large part of the variability in PAH emission factors from biomass combustion reported in the literature. We found that optimal conditions for fuel moisture content of 20–30<span><math><mtext>%</mtext></math></span>, sample heat load of <span><math><mrow><mn>60</mn><mo>−</mo><mtext>70</mtext><mspace></mspace><mtext>kW</mtext><mspace></mspace><mtext>m</mtext><msup><mrow></mrow><mrow><mi>−2</mi></mrow></msup></mrow></math></span>, and oxygen concentrations of 5–15<span><math><mtext>%</mtext></math></span> can significantly reduce the emissions of heavy molar weight PAHs.</div><div>Our analysis showed that the relative carcinogenic risk from PAH exposure can be reduced by more than 50% under optimal conditions. In light of the increasing use of prescribed fire for forest management, the relationship between emissions and burn conditions that we have established provides a guidance for assessing the expected health impact from prescription burns, and can inform strategies to reduce PAH emissions from prescribed fire activities.</div></div>","PeriodicalId":8604,"journal":{"name":"Atmospheric Pollution Research","volume":"16 5","pages":"Article 102438"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1309104225000406","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Wildfire smoke is a health hazard as it contains carcinogenic volatile compounds and fine particulate matter. In particular, exposure to polycyclic aromatic hydrocarbons (PAHs) is a major concern, since these compounds have been recognized as important contributors to the overall carcinogenic risk. In this work, gas and particle-phase PAH emissions from combustion of Eastern White Pine (Pinus strobus) were quantified using time-of-flight mass spectrometry over a range of burn conditions representative of wildfires and prescribed fires, including fuel moisture, heat flux, and oxygen concentration. We found that changing the burn environment lead to a variability of up to 77% in phenanthrene/anthracene emissions. This could explain a large part of the variability in PAH emission factors from biomass combustion reported in the literature. We found that optimal conditions for fuel moisture content of 20–30, sample heat load of , and oxygen concentrations of 5–15 can significantly reduce the emissions of heavy molar weight PAHs.
Our analysis showed that the relative carcinogenic risk from PAH exposure can be reduced by more than 50% under optimal conditions. In light of the increasing use of prescribed fire for forest management, the relationship between emissions and burn conditions that we have established provides a guidance for assessing the expected health impact from prescription burns, and can inform strategies to reduce PAH emissions from prescribed fire activities.
期刊介绍:
Atmospheric Pollution Research (APR) is an international journal designed for the publication of articles on air pollution. Papers should present novel experimental results, theory and modeling of air pollution on local, regional, or global scales. Areas covered are research on inorganic, organic, and persistent organic air pollutants, air quality monitoring, air quality management, atmospheric dispersion and transport, air-surface (soil, water, and vegetation) exchange of pollutants, dry and wet deposition, indoor air quality, exposure assessment, health effects, satellite measurements, natural emissions, atmospheric chemistry, greenhouse gases, and effects on climate change.