Manufacturing of irregular shapes through force control in incremental sheet forming with active medium

IF 3.9 Q2 ENGINEERING, INDUSTRIAL
Sebastian Thiery , Mazhar Zein El Abdine , Jens Heger , Noomane Ben Khalifa
{"title":"Manufacturing of irregular shapes through force control in incremental sheet forming with active medium","authors":"Sebastian Thiery ,&nbsp;Mazhar Zein El Abdine ,&nbsp;Jens Heger ,&nbsp;Noomane Ben Khalifa","doi":"10.1016/j.aime.2025.100157","DOIUrl":null,"url":null,"abstract":"<div><div>Convex shapes can be created in incremental sheet forming by supporting the workpiece with the pressure of an active medium. In this paper, a method is presented for creating irregular convex shapes by adjusting the pressure to control the forming forces. At first, the general characteristics of the forming forces in incremental sheet forming with active medium (IFAM) are investigated based on a truncated pyramid and a truncated cone. The findings show that the pressure has to be adapted for each contour of the toolpath to achieve a specific wall angle. However, this strategy cannot be applied for an irregular shape consisting of half a truncated pyramid and half a truncated cone since the forming forces fluctuate over one contour. To enhance the control approach, a data set is subsequently generated by recording the forming forces under the influence of the wall angle. The data analysis reveals a strong correlation between the height difference per contour and the tangential force. Finally, a control concept is proposed to adjust the tangential force and is subsequently validated on the irregular-shaped part. The results prove that irregular shapes require a sophisticated control of the forming forces to increase the geometrical accuracy.</div></div>","PeriodicalId":34573,"journal":{"name":"Advances in Industrial and Manufacturing Engineering","volume":"10 ","pages":"Article 100157"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Industrial and Manufacturing Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666912925000017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

Abstract

Convex shapes can be created in incremental sheet forming by supporting the workpiece with the pressure of an active medium. In this paper, a method is presented for creating irregular convex shapes by adjusting the pressure to control the forming forces. At first, the general characteristics of the forming forces in incremental sheet forming with active medium (IFAM) are investigated based on a truncated pyramid and a truncated cone. The findings show that the pressure has to be adapted for each contour of the toolpath to achieve a specific wall angle. However, this strategy cannot be applied for an irregular shape consisting of half a truncated pyramid and half a truncated cone since the forming forces fluctuate over one contour. To enhance the control approach, a data set is subsequently generated by recording the forming forces under the influence of the wall angle. The data analysis reveals a strong correlation between the height difference per contour and the tangential force. Finally, a control concept is proposed to adjust the tangential force and is subsequently validated on the irregular-shaped part. The results prove that irregular shapes require a sophisticated control of the forming forces to increase the geometrical accuracy.

Abstract Image

在有源介质的增量板料成形中,通过力控制制造不规则形状
凸形状可以创建在增量板成形通过支持工件的压力的有效介质。本文提出了一种通过调节压力来控制成形力的方法。首先,研究了基于截顶锥体和截顶锥体的主动介质增量板料成形力的一般特征。研究结果表明,为了达到特定的壁角,必须对工具路径的每个轮廓进行压力调整。然而,由于成形力在一个轮廓上波动,这种策略不能应用于由半截锥体和半截锥体组成的不规则形状。为了增强控制方法,随后通过记录壁角影响下的成形力生成数据集。数据分析表明,每个轮廓的高度差与切向力之间存在很强的相关性。最后,提出了一种切向力调节的控制概念,并在异形零件上进行了验证。结果表明,不规则形状需要精密的成形力控制来提高几何精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Industrial and Manufacturing Engineering
Advances in Industrial and Manufacturing Engineering Engineering-Engineering (miscellaneous)
CiteScore
6.60
自引率
0.00%
发文量
31
审稿时长
18 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信