Electro-discharge machining of microholes on 3d printed Hastelloy using the novel tool-feeding approach

Q1 Engineering
Akash Korgal , Arun Kumar Shettigar , Navin Karanth P , Nishanth Kumar , Bindu Madhavi J
{"title":"Electro-discharge machining of microholes on 3d printed Hastelloy using the novel tool-feeding approach","authors":"Akash Korgal ,&nbsp;Arun Kumar Shettigar ,&nbsp;Navin Karanth P ,&nbsp;Nishanth Kumar ,&nbsp;Bindu Madhavi J","doi":"10.1016/j.ijlmm.2024.10.005","DOIUrl":null,"url":null,"abstract":"<div><div>Hastelloy, a nickel-based superalloy renowned for its exceptional resistance to corrosion at high temperatures, is widely used in sectors such as nuclear, aerospace, chemical processing, and pharmaceuticals. Microelectrical discharge machining (μ-EDM) is crucial for generating microholes and channels on Hastelloy. Since it effectively addresses difficulties like work hardening, high strength &amp; wear resistance, and low thermal conductivity in traditional machining. Microholes play a major role in many critical components for precise control of fluids in fuel injectors, managing heat in turbine blades, controlled gas exchange, etc. The current research investigates the drilling of 8:1 aspect ratio microholes machined by 400 μm diameter electrodes. This study investigated the influence of tool material (tungsten carbide, carbide drill bit, and brass) on μ-EDM performance. Compared to tungsten carbide and carbide drill bits, brass exhibited significantly lower electrode wear, leading to more precise microholes with reduced overcut and taper angle. However, brass also required a substantially longer machining time. Carbide drill bits offered a balance between wear resistance, machining time, and overcut/taper angle.</div></div>","PeriodicalId":52306,"journal":{"name":"International Journal of Lightweight Materials and Manufacture","volume":"8 2","pages":"Pages 157-164"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Lightweight Materials and Manufacture","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588840424000969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Hastelloy, a nickel-based superalloy renowned for its exceptional resistance to corrosion at high temperatures, is widely used in sectors such as nuclear, aerospace, chemical processing, and pharmaceuticals. Microelectrical discharge machining (μ-EDM) is crucial for generating microholes and channels on Hastelloy. Since it effectively addresses difficulties like work hardening, high strength & wear resistance, and low thermal conductivity in traditional machining. Microholes play a major role in many critical components for precise control of fluids in fuel injectors, managing heat in turbine blades, controlled gas exchange, etc. The current research investigates the drilling of 8:1 aspect ratio microholes machined by 400 μm diameter electrodes. This study investigated the influence of tool material (tungsten carbide, carbide drill bit, and brass) on μ-EDM performance. Compared to tungsten carbide and carbide drill bits, brass exhibited significantly lower electrode wear, leading to more precise microholes with reduced overcut and taper angle. However, brass also required a substantially longer machining time. Carbide drill bits offered a balance between wear resistance, machining time, and overcut/taper angle.
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Lightweight Materials and Manufacture
International Journal of Lightweight Materials and Manufacture Engineering-Industrial and Manufacturing Engineering
CiteScore
9.90
自引率
0.00%
发文量
52
审稿时长
48 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信