Urban heat island and pollutant correlations in Bangalore, India using geospatial techniques

Aneesh Mathew, K.S. Arunab
{"title":"Urban heat island and pollutant correlations in Bangalore, India using geospatial techniques","authors":"Aneesh Mathew,&nbsp;K.S. Arunab","doi":"10.1016/j.solcom.2025.100108","DOIUrl":null,"url":null,"abstract":"<div><div>The interaction between urban heat island (UHI) effects and urban air pollution significantly impacts urban ecology, climate dynamics, and inhabitants' well-being. This study examines into the correlation between UHI effects and various pollutants (CO, HCHO, aerosols, NO<sub>2</sub>, O<sub>3</sub>, and SO<sub>2</sub>) across Bangalore from 2019 to 2022, exploring their spatial and thermal connections. The study utilized satellite remote sensing data from TROPOMI for air pollutants (CO, NO₂, HCHO, SO₂, O₃, and aerosols) and MODIS for land surface temperature (LST). Data were collected over a four-year period (2019–2022) to analyze spatial and temporal pollutant distributions and UHI effects in Bangalore and employed statistical methods, including Pearson correlation, independent <em>t</em>-tests, and ANOVA, to assess the relationships between UHI indicators and pollutant concentrations. A weighted Urban Pollution Island (UPI) index was developed using Fuzzy AHP, while thermal categorization was achieved through spatial analysis techniques. Research indicates significantly elevated pollution levels in urban areas compared to rural regions. The research demonstrates positive correlation between UHI indicators and CO, HCHO, aerosols, NO<sub>2</sub>, and O<sub>3</sub> in urban-rural environments. A negative correlation is observed between the UHI indicator and SO<sub>2</sub> in these contexts, requiring a thorough investigation of the UHI-pollutant relationship. High-risk zones (HRZs) demonstrate significantly elevated yearly average concentrations of NO<sub>2</sub> (66.614%), aerosols (13.610%), HCHO (8.816%), and CO (2.028%) relative to low-risk zones (LRZs). Ozone levels are consistently similar between HRZs and LRZs. In contrast, LRZs demonstrate a greater yearly average concentration of SO<sub>2</sub> (7.562%) than HRZs. Furthermore, HRZs exhibit an elevated LST of 2.198 °C relative to LRZs. These results yield essential insights for urban planning and policy development, providing a thorough comprehension of UHI pollution dynamics. This research clarifies these dynamics, aiding informed decision-making to mitigate the effects of UHI and pollution in urban settings.</div></div>","PeriodicalId":101173,"journal":{"name":"Solar Compass","volume":"14 ","pages":"Article 100108"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Compass","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772940025000037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The interaction between urban heat island (UHI) effects and urban air pollution significantly impacts urban ecology, climate dynamics, and inhabitants' well-being. This study examines into the correlation between UHI effects and various pollutants (CO, HCHO, aerosols, NO2, O3, and SO2) across Bangalore from 2019 to 2022, exploring their spatial and thermal connections. The study utilized satellite remote sensing data from TROPOMI for air pollutants (CO, NO₂, HCHO, SO₂, O₃, and aerosols) and MODIS for land surface temperature (LST). Data were collected over a four-year period (2019–2022) to analyze spatial and temporal pollutant distributions and UHI effects in Bangalore and employed statistical methods, including Pearson correlation, independent t-tests, and ANOVA, to assess the relationships between UHI indicators and pollutant concentrations. A weighted Urban Pollution Island (UPI) index was developed using Fuzzy AHP, while thermal categorization was achieved through spatial analysis techniques. Research indicates significantly elevated pollution levels in urban areas compared to rural regions. The research demonstrates positive correlation between UHI indicators and CO, HCHO, aerosols, NO2, and O3 in urban-rural environments. A negative correlation is observed between the UHI indicator and SO2 in these contexts, requiring a thorough investigation of the UHI-pollutant relationship. High-risk zones (HRZs) demonstrate significantly elevated yearly average concentrations of NO2 (66.614%), aerosols (13.610%), HCHO (8.816%), and CO (2.028%) relative to low-risk zones (LRZs). Ozone levels are consistently similar between HRZs and LRZs. In contrast, LRZs demonstrate a greater yearly average concentration of SO2 (7.562%) than HRZs. Furthermore, HRZs exhibit an elevated LST of 2.198 °C relative to LRZs. These results yield essential insights for urban planning and policy development, providing a thorough comprehension of UHI pollution dynamics. This research clarifies these dynamics, aiding informed decision-making to mitigate the effects of UHI and pollution in urban settings.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信