Engineering hierarchical multilevel microstructures of CoNC/rGO aerogel originated from interfacially ordered ZIF-L nanosheet arrays for superior electromagnetic wave dissipation
IF 8.2 2区 材料科学Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
{"title":"Engineering hierarchical multilevel microstructures of CoNC/rGO aerogel originated from interfacially ordered ZIF-L nanosheet arrays for superior electromagnetic wave dissipation","authors":"Xueqing Xu, Qiyun Mu, Deshun Li, Hui Xi, Xiaorong Yang, Ziqiang Lei, Zhiwang Yang","doi":"10.1016/j.mtnano.2025.100591","DOIUrl":null,"url":null,"abstract":"<div><div>Rational manipulation of hierarchical microarchitecture engineering has emerged as a highly appealing approach to achieving exceptional electromagnetic wave (EMW) absorption performance in carbon-based aerogel absorbers. However, inadequate interfacial engineering and impedance mismatch pose significant obstacles to optimizing EMW absorption, primarily due to the limitations in current construction strategies. Herein, multilevel heterogeneous carbon-based aerogels, Co/N-doped carbon nanosheets tightly anchored on reduced graphene oxide aerogel (CoNC/rGO), have been fabricated through in-situ growing interfacially ordered bimetallic Co/Zn-ZIF-L nanoarray on chitosan crosslinked graphene oxide aerogel (ZIF/CS-GO), followed by a pyrolysis process. The resultant CoNC/rGO aerogels exhibit a multilevel interfacial effect and a 3D interconnected dielectric network, leading to substantial enhancements in polarization loss and dielectric-magnetic coupling synergy, along with optimized impedance matching. Consequently, the optimized CoNC/rGO-3/1 and CoNC/rGO-1/1 aerogels demonstrate impressive EMW absorption performance, characterized by strong and broad absorption capabilities. Specifically, the maximum reflection loss (RL) values for CoNC/rGO-3/1 and CoNC/rGO-1/1 reached −56.6 dB at 2.4 mm and −58.1 dB at 3.1 mm, respectively. Additionally, these aerogels achieved broad effective absorption bandwidths (EAB) of 5.04 GHz and 4.56 GHz at a thickness of 1.8 mm, respectively. This work provides an effective and innovative strategy for developing of advanced EMW absorbers in carbon-based aerogels by rationally constructing multilevel heterogeneous interfaces, utilizing metal-organic frameworks (MOFs) as foundational building blocks.</div></div>","PeriodicalId":48517,"journal":{"name":"Materials Today Nano","volume":"29 ","pages":"Article 100591"},"PeriodicalIF":8.2000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Nano","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588842025000227","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Rational manipulation of hierarchical microarchitecture engineering has emerged as a highly appealing approach to achieving exceptional electromagnetic wave (EMW) absorption performance in carbon-based aerogel absorbers. However, inadequate interfacial engineering and impedance mismatch pose significant obstacles to optimizing EMW absorption, primarily due to the limitations in current construction strategies. Herein, multilevel heterogeneous carbon-based aerogels, Co/N-doped carbon nanosheets tightly anchored on reduced graphene oxide aerogel (CoNC/rGO), have been fabricated through in-situ growing interfacially ordered bimetallic Co/Zn-ZIF-L nanoarray on chitosan crosslinked graphene oxide aerogel (ZIF/CS-GO), followed by a pyrolysis process. The resultant CoNC/rGO aerogels exhibit a multilevel interfacial effect and a 3D interconnected dielectric network, leading to substantial enhancements in polarization loss and dielectric-magnetic coupling synergy, along with optimized impedance matching. Consequently, the optimized CoNC/rGO-3/1 and CoNC/rGO-1/1 aerogels demonstrate impressive EMW absorption performance, characterized by strong and broad absorption capabilities. Specifically, the maximum reflection loss (RL) values for CoNC/rGO-3/1 and CoNC/rGO-1/1 reached −56.6 dB at 2.4 mm and −58.1 dB at 3.1 mm, respectively. Additionally, these aerogels achieved broad effective absorption bandwidths (EAB) of 5.04 GHz and 4.56 GHz at a thickness of 1.8 mm, respectively. This work provides an effective and innovative strategy for developing of advanced EMW absorbers in carbon-based aerogels by rationally constructing multilevel heterogeneous interfaces, utilizing metal-organic frameworks (MOFs) as foundational building blocks.
期刊介绍:
Materials Today Nano is a multidisciplinary journal dedicated to nanoscience and nanotechnology. The journal aims to showcase the latest advances in nanoscience and provide a platform for discussing new concepts and applications. With rigorous peer review, rapid decisions, and high visibility, Materials Today Nano offers authors the opportunity to publish comprehensive articles, short communications, and reviews on a wide range of topics in nanoscience. The editors welcome comprehensive articles, short communications and reviews on topics including but not limited to:
Nanoscale synthesis and assembly
Nanoscale characterization
Nanoscale fabrication
Nanoelectronics and molecular electronics
Nanomedicine
Nanomechanics
Nanosensors
Nanophotonics
Nanocomposites