{"title":"An empirical investigation into enhancing natural convection heat transfer through corona wind in a needle-to-cylinder configuration","authors":"Chakrit Suvanjumrat , Jetsadaporn Priyadumkol , Kunthakorn Khaothong , Weerachai Chaiworapuek","doi":"10.1016/j.csite.2025.105864","DOIUrl":null,"url":null,"abstract":"<div><div>Enhancing natural convection heat transfer in heated electrical devices, particularly those with curved geometries and limited space for cooling systems is a crucial area of research. This study experimentally evaluated the performance of a corona wind generator—an electrohydrodynamic (EHD) system—employing needle-to-cylinder configurations to improve natural convection around a heated cylinder. Three configurations were investigated: a single vertical wire electrode, a single lateral wire electrode, and two lateral wire electrodes, positioned perpendicular to the cylindrical surface at varying distances. Voltages ranging from 0 to 9000 V were applied to produce a corona wind jet. The findings revealed that lateral wire electrode configurations significantly enhanced natural convection heat transfer, achieving an average Nusselt number improvement exceeding 51.17 % at 8000 V compared to natural convection alone. Among these, the single lateral electrode configuration demonstrated superior performance, yielding a 13.87 % higher average Nusselt number than the vertical electrode configuration. It was observed that the corona wind jet initially impinged on the heated cylinder; however, increasing the distance between the electrode tip and the cylinder caused the jet to rise due to buoyancy, reducing its cooling effectiveness. Despite this limitation, the lateral electrode configurations effectively enhanced natural convection. The experimental results were utilized to develop a practical Nusselt number correlation that integrates voltage, electrode tip distance, distance of two electrodes, and cylinder diameter. The proposed model demonstrated high accuracy, with R<sup>2</sup> values ranging from 0.81 to 0.94, offering a valuable tool for designing efficient cooling systems for electrical devices.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"68 ","pages":"Article 105864"},"PeriodicalIF":6.4000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214157X25001248","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Enhancing natural convection heat transfer in heated electrical devices, particularly those with curved geometries and limited space for cooling systems is a crucial area of research. This study experimentally evaluated the performance of a corona wind generator—an electrohydrodynamic (EHD) system—employing needle-to-cylinder configurations to improve natural convection around a heated cylinder. Three configurations were investigated: a single vertical wire electrode, a single lateral wire electrode, and two lateral wire electrodes, positioned perpendicular to the cylindrical surface at varying distances. Voltages ranging from 0 to 9000 V were applied to produce a corona wind jet. The findings revealed that lateral wire electrode configurations significantly enhanced natural convection heat transfer, achieving an average Nusselt number improvement exceeding 51.17 % at 8000 V compared to natural convection alone. Among these, the single lateral electrode configuration demonstrated superior performance, yielding a 13.87 % higher average Nusselt number than the vertical electrode configuration. It was observed that the corona wind jet initially impinged on the heated cylinder; however, increasing the distance between the electrode tip and the cylinder caused the jet to rise due to buoyancy, reducing its cooling effectiveness. Despite this limitation, the lateral electrode configurations effectively enhanced natural convection. The experimental results were utilized to develop a practical Nusselt number correlation that integrates voltage, electrode tip distance, distance of two electrodes, and cylinder diameter. The proposed model demonstrated high accuracy, with R2 values ranging from 0.81 to 0.94, offering a valuable tool for designing efficient cooling systems for electrical devices.
期刊介绍:
Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.