Advances in the removal of Polyfluoroalkyl Substances (PFAS) from water using destructive and non-destructive methods

Hafiz Nawaz Hussain , Muhammad Idrees Jilani , Faiza Imtiaz , Toheed Ahmed , Muhammad Bilal Arshad , Muhammad Mudassar , Muhammad Noman Sharif
{"title":"Advances in the removal of Polyfluoroalkyl Substances (PFAS) from water using destructive and non-destructive methods","authors":"Hafiz Nawaz Hussain ,&nbsp;Muhammad Idrees Jilani ,&nbsp;Faiza Imtiaz ,&nbsp;Toheed Ahmed ,&nbsp;Muhammad Bilal Arshad ,&nbsp;Muhammad Mudassar ,&nbsp;Muhammad Noman Sharif","doi":"10.1016/j.greeac.2025.100225","DOIUrl":null,"url":null,"abstract":"<div><div>Per and polyfluoroalkyl substances (PFAS) are persistent synthetic chemicals with strong carbon-fluorine (C-F) bonds, making them resistant to environmental degradation. Their widespread presence in groundwater, surface water, and drinking water, particularly subtypes like PFOS and PFOA, highlights a critical need for effective removal methods. Current challenges include the durability of PFAS bonds and the environmental mobility of these substances. This study hypothesizes that adsorption offers a scalable and cost-effective approach for PFAS remediation. Using advanced adsorbent materials, the research evaluates the efficiency of adsorption technologies and their applicability to real-world scenarios. Results demonstrate the potential of novel adsorbents to achieve high PFAS removal rates while minimizing secondary contamination risks. The study concludes that aligning these solutions with evolving environmental regulations and assessing their cost and scalability are vital for tackling PFAS pollution effectively. This research contributes actionable insights to the development of sustainable PFAS management strategies, addressing critical gaps in large-scale applications.</div></div>","PeriodicalId":100594,"journal":{"name":"Green Analytical Chemistry","volume":"12 ","pages":"Article 100225"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Analytical Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772577425000229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Per and polyfluoroalkyl substances (PFAS) are persistent synthetic chemicals with strong carbon-fluorine (C-F) bonds, making them resistant to environmental degradation. Their widespread presence in groundwater, surface water, and drinking water, particularly subtypes like PFOS and PFOA, highlights a critical need for effective removal methods. Current challenges include the durability of PFAS bonds and the environmental mobility of these substances. This study hypothesizes that adsorption offers a scalable and cost-effective approach for PFAS remediation. Using advanced adsorbent materials, the research evaluates the efficiency of adsorption technologies and their applicability to real-world scenarios. Results demonstrate the potential of novel adsorbents to achieve high PFAS removal rates while minimizing secondary contamination risks. The study concludes that aligning these solutions with evolving environmental regulations and assessing their cost and scalability are vital for tackling PFAS pollution effectively. This research contributes actionable insights to the development of sustainable PFAS management strategies, addressing critical gaps in large-scale applications.
利用破坏性和非破坏性方法去除水中的多氟烷基物质 (PFAS) 的进展情况
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信