Investigation of TNF and related lncRNAs in diabetic nephropathy

IF 3.7 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Seyed Mohsen Aghaei-Zarch , Leila Mahmoudieh , Mohammad Miryounesi , Maryam Aghazadeh , Mehran Reihani-Ardabili , Marzieh Zamani , Marzieh Motallebi , Abolfazl Movafagh
{"title":"Investigation of TNF and related lncRNAs in diabetic nephropathy","authors":"Seyed Mohsen Aghaei-Zarch ,&nbsp;Leila Mahmoudieh ,&nbsp;Mohammad Miryounesi ,&nbsp;Maryam Aghazadeh ,&nbsp;Mehran Reihani-Ardabili ,&nbsp;Marzieh Zamani ,&nbsp;Marzieh Motallebi ,&nbsp;Abolfazl Movafagh","doi":"10.1016/j.cyto.2025.156892","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Diabetic nephropathy (DN) is a significant driver of end-stage renal disease, requiring kidney replacement therapies such as transplantation and dialysis. Given the critical importance of understanding the onset and progression of DN, we sought to explore the expression levels of tumor necrosis factor (TNF) and related long noncoding RNAs (lncRNAs) in diabetic patients with and without DN, as well as in pre-diabetic individuals, compared to healthy controls. We further explored the involvement of TNF and TNF-related lncRNAs in high glucose (HG)-induced apoptosis of human embryonic kidney (HEK)-293 cells.</div></div><div><h3>Material and method</h3><div>In the current cross-sectional investigation, we compare the expression levels of lncRNA myocardial infarction-associated transcript (MIAT), lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1), and TNF in 50 healthy individuals, 50 people with prediabetes, 50 patients with type 2 diabetes mellitus (T2DM), and 50 patients with T2DM- DN. We cultured HEK293 cells in a HG condition (100 mM glucose) to establish a cellular model of DN, while HEK293 cells cultured in a normal-glucose environment (5 mM glucose) served as controls. We further assess apoptosis in HEK293 cells via flow cytometry analysis. Moreover, we evaluated the expression levels of lncRNA MIAT, lncRNA NEAT1, and TNF in HG and normal-glucose (NG) groups to investigate their potential involvement in HEK293 cell apoptosis and the pathogenesis of DN.</div></div><div><h3>Result</h3><div>Our findings reveal a significant upregulation of lncRNA MIAT, lncRNA NEAT1, and TNF in T2DM and T2DM-associated DN groups compared to prediabetic individuals and healthy controls (<em>p</em> &lt; 0.05). Furthermore, HG conditions significantly increased the apoptotic rate of HEK293 cells. Additionally, the expression levels of TNF, lncRNA MIAT, and lncRNA NEAT1 were increased in HEK-293 cells cultured in a HG.</div></div><div><h3>Conclusion</h3><div>In conclusion, our findings indicate a significant role for the TNF gene and associated lncRNAs, such as lncRNA MIAT and lncRNA NEAT1, in podocyte apoptosis and the development of DN.</div></div>","PeriodicalId":297,"journal":{"name":"Cytokine","volume":"188 ","pages":"Article 156892"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytokine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1043466625000390","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Diabetic nephropathy (DN) is a significant driver of end-stage renal disease, requiring kidney replacement therapies such as transplantation and dialysis. Given the critical importance of understanding the onset and progression of DN, we sought to explore the expression levels of tumor necrosis factor (TNF) and related long noncoding RNAs (lncRNAs) in diabetic patients with and without DN, as well as in pre-diabetic individuals, compared to healthy controls. We further explored the involvement of TNF and TNF-related lncRNAs in high glucose (HG)-induced apoptosis of human embryonic kidney (HEK)-293 cells.

Material and method

In the current cross-sectional investigation, we compare the expression levels of lncRNA myocardial infarction-associated transcript (MIAT), lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1), and TNF in 50 healthy individuals, 50 people with prediabetes, 50 patients with type 2 diabetes mellitus (T2DM), and 50 patients with T2DM- DN. We cultured HEK293 cells in a HG condition (100 mM glucose) to establish a cellular model of DN, while HEK293 cells cultured in a normal-glucose environment (5 mM glucose) served as controls. We further assess apoptosis in HEK293 cells via flow cytometry analysis. Moreover, we evaluated the expression levels of lncRNA MIAT, lncRNA NEAT1, and TNF in HG and normal-glucose (NG) groups to investigate their potential involvement in HEK293 cell apoptosis and the pathogenesis of DN.

Result

Our findings reveal a significant upregulation of lncRNA MIAT, lncRNA NEAT1, and TNF in T2DM and T2DM-associated DN groups compared to prediabetic individuals and healthy controls (p < 0.05). Furthermore, HG conditions significantly increased the apoptotic rate of HEK293 cells. Additionally, the expression levels of TNF, lncRNA MIAT, and lncRNA NEAT1 were increased in HEK-293 cells cultured in a HG.

Conclusion

In conclusion, our findings indicate a significant role for the TNF gene and associated lncRNAs, such as lncRNA MIAT and lncRNA NEAT1, in podocyte apoptosis and the development of DN.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cytokine
Cytokine 医学-免疫学
CiteScore
7.60
自引率
2.60%
发文量
262
审稿时长
48 days
期刊介绍: The journal Cytokine has an open access mirror journal Cytokine: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. * Devoted exclusively to the study of the molecular biology, genetics, biochemistry, immunology, genome-wide association studies, pathobiology, diagnostic and clinical applications of all known interleukins, hematopoietic factors, growth factors, cytotoxins, interferons, new cytokines, and chemokines, Cytokine provides comprehensive coverage of cytokines and their mechanisms of actions, 12 times a year by publishing original high quality refereed scientific papers from prominent investigators in both the academic and industrial sectors. We will publish 3 major types of manuscripts: 1) Original manuscripts describing research results. 2) Basic and clinical reviews describing cytokine actions and regulation. 3) Short commentaries/perspectives on recently published aspects of cytokines, pathogenesis and clinical results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信