A novel framework for characterizing spacetime microstructure with scaling

IF 2.5 3区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS
Weihu Ma (马维虎) , Yu-Gang Ma (马余刚)
{"title":"A novel framework for characterizing spacetime microstructure with scaling","authors":"Weihu Ma (马维虎) ,&nbsp;Yu-Gang Ma (马余刚)","doi":"10.1016/j.nuclphysb.2025.116842","DOIUrl":null,"url":null,"abstract":"<div><div>The study of physics at the Planck scale has garnered significant attention due to its implications for understanding the fundamental nature of the universe. At the Planck scale, quantum fluctuations challenge the classical notion of spacetime as a smooth continuum, revealing a complex microstructure that defies traditional models. This study introduces a novel scaling-based framework to investigate the properties of spacetime microstructures. By deriving a scaling-characterized metric tensor and reformulating fundamental equations—including the geodesic, Einstein field, Klein-Gordon, and Dirac equations—into scaling forms, the research reveals new properties of local spacetime dynamics. Remarkably, the golden ratio emerges naturally in linear scale measurements, offering a potential explanation for the role of the Planck length in resolving ultraviolet (UV) divergence. Furthermore, the study demonstrates how scale invariance in spacetime can restore classical geometric stability through the renormalization group equations. These findings significantly revise classical geometric intuitions, providing a fresh lens for understanding quantum fluctuations and offering promising insights for advancing quantum gravity theories.</div></div>","PeriodicalId":54712,"journal":{"name":"Nuclear Physics B","volume":"1012 ","pages":"Article 116842"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0550321325000513","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0

Abstract

The study of physics at the Planck scale has garnered significant attention due to its implications for understanding the fundamental nature of the universe. At the Planck scale, quantum fluctuations challenge the classical notion of spacetime as a smooth continuum, revealing a complex microstructure that defies traditional models. This study introduces a novel scaling-based framework to investigate the properties of spacetime microstructures. By deriving a scaling-characterized metric tensor and reformulating fundamental equations—including the geodesic, Einstein field, Klein-Gordon, and Dirac equations—into scaling forms, the research reveals new properties of local spacetime dynamics. Remarkably, the golden ratio emerges naturally in linear scale measurements, offering a potential explanation for the role of the Planck length in resolving ultraviolet (UV) divergence. Furthermore, the study demonstrates how scale invariance in spacetime can restore classical geometric stability through the renormalization group equations. These findings significantly revise classical geometric intuitions, providing a fresh lens for understanding quantum fluctuations and offering promising insights for advancing quantum gravity theories.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nuclear Physics B
Nuclear Physics B 物理-物理:粒子与场物理
CiteScore
5.50
自引率
7.10%
发文量
302
审稿时长
1 months
期刊介绍: Nuclear Physics B focuses on the domain of high energy physics, quantum field theory, statistical systems, and mathematical physics, and includes four main sections: high energy physics - phenomenology, high energy physics - theory, high energy physics - experiment, and quantum field theory, statistical systems, and mathematical physics. The emphasis is on original research papers (Frontiers Articles or Full Length Articles), but Review Articles are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信