Haar wavelet Arctic Puffin optimization method (HWAPOM): Application to logistic models with fractal-fractional Caputo-Fabrizio operator

Q1 Mathematics
Najeeb Alam Khan , Sahar Altaf , Nadeem Alam Khan , Muhammad Ayaz
{"title":"Haar wavelet Arctic Puffin optimization method (HWAPOM): Application to logistic models with fractal-fractional Caputo-Fabrizio operator","authors":"Najeeb Alam Khan ,&nbsp;Sahar Altaf ,&nbsp;Nadeem Alam Khan ,&nbsp;Muhammad Ayaz","doi":"10.1016/j.padiff.2025.101114","DOIUrl":null,"url":null,"abstract":"<div><div>This study introduces a novel hybrid numerical methodology for approximating differential equations involving the fractal-fractional Caputo-Fabrizio (FFCF) operator, which is an essential tool for modelling complex dynamical systems involving memory effects. The proposed method integrates the Haar wavelet with the Arctic Puffin optimization (APO) algorithm, a meta-heuristic optimization inspired by the foraging behavior of Arctic Puffins. The Haar wavelet, well-known for its compact support and piecewise constant characteristics, is based on the Haar basis functions used to construct an operational matrix for the FFCF operator. These matrices transform the differential equations into a system of algebraic equations involving unknown coefficients, and then optimize them using the APO algorithm, ensuring efficient and accurate solutions. Two nonlinear quadratic and cubic logistic models were examined to demonstrate the effectiveness of this method. The accuracy of the designed method was validated by comparing its results with those obtained using the modified Homotopy Perturbation method (MHPM). Error metrics, such as mean absolute error, maximum absolute error, and the experimental convergence rate, are calculated at various collocation points and presented in a tabular format. The findings revealed the method's high accuracy, rapid convergence, and computational efficiency. Overall, the proposed method offers a powerful tool for solving complex differential equations, as evidenced by its strong agreement with MHPM results. The study results were further reinforced through statistical performance metrics and their visual representations, confirming the reliability of the method, low computational cost, and its potential for broad application in numerical computations.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"13 ","pages":"Article 101114"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818125000427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces a novel hybrid numerical methodology for approximating differential equations involving the fractal-fractional Caputo-Fabrizio (FFCF) operator, which is an essential tool for modelling complex dynamical systems involving memory effects. The proposed method integrates the Haar wavelet with the Arctic Puffin optimization (APO) algorithm, a meta-heuristic optimization inspired by the foraging behavior of Arctic Puffins. The Haar wavelet, well-known for its compact support and piecewise constant characteristics, is based on the Haar basis functions used to construct an operational matrix for the FFCF operator. These matrices transform the differential equations into a system of algebraic equations involving unknown coefficients, and then optimize them using the APO algorithm, ensuring efficient and accurate solutions. Two nonlinear quadratic and cubic logistic models were examined to demonstrate the effectiveness of this method. The accuracy of the designed method was validated by comparing its results with those obtained using the modified Homotopy Perturbation method (MHPM). Error metrics, such as mean absolute error, maximum absolute error, and the experimental convergence rate, are calculated at various collocation points and presented in a tabular format. The findings revealed the method's high accuracy, rapid convergence, and computational efficiency. Overall, the proposed method offers a powerful tool for solving complex differential equations, as evidenced by its strong agreement with MHPM results. The study results were further reinforced through statistical performance metrics and their visual representations, confirming the reliability of the method, low computational cost, and its potential for broad application in numerical computations.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信