Consumption and portfolio optimization solvable problems with recursive preferences

IF 3.4 2区 数学 Q1 MATHEMATICS, APPLIED
Jian-hao Kang , Zhun Gou , Nan-jing Huang
{"title":"Consumption and portfolio optimization solvable problems with recursive preferences","authors":"Jian-hao Kang ,&nbsp;Zhun Gou ,&nbsp;Nan-jing Huang","doi":"10.1016/j.cnsns.2025.108675","DOIUrl":null,"url":null,"abstract":"<div><div>This paper considers the consumption and portfolio optimization problems with recursive preferences in both infinite and finite time regions, in which the financial market consists of a risk-free asset and a risky asset following a general stochastic volatility process. By using Bellman’s dynamic programming principle, the Hamilton–Jacobi–Bellman (HJB) equation is derived for characterizing the optimal consumption–investment strategy and the corresponding value function. Based on the conjecture of the exponential-polynomial form of the value function under mild conditions, we prove that, when the order of the polynomial <span><math><mrow><mi>n</mi><mo>≤</mo><mn>2</mn></mrow></math></span>, the HJB equation has an analytical solution if the investor with unit elasticity of intertemporal substitution and an approximate solution by the log-linear approximation method otherwise. We also prove that the HJB equation has no solutions under the conjecture of the exponential-polynomial form of the value function when the order of the polynomial <span><math><mrow><mi>n</mi><mo>&gt;</mo><mn>2</mn></mrow></math></span>. Finally, the optimal consumption–portfolio strategies to Heston’s model are provided and some numerical experiments are given to illustrate the behavior of the optimal consumption–portfolio strategies.</div></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":"144 ","pages":"Article 108675"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1007570425000863","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper considers the consumption and portfolio optimization problems with recursive preferences in both infinite and finite time regions, in which the financial market consists of a risk-free asset and a risky asset following a general stochastic volatility process. By using Bellman’s dynamic programming principle, the Hamilton–Jacobi–Bellman (HJB) equation is derived for characterizing the optimal consumption–investment strategy and the corresponding value function. Based on the conjecture of the exponential-polynomial form of the value function under mild conditions, we prove that, when the order of the polynomial n2, the HJB equation has an analytical solution if the investor with unit elasticity of intertemporal substitution and an approximate solution by the log-linear approximation method otherwise. We also prove that the HJB equation has no solutions under the conjecture of the exponential-polynomial form of the value function when the order of the polynomial n>2. Finally, the optimal consumption–portfolio strategies to Heston’s model are provided and some numerical experiments are given to illustrate the behavior of the optimal consumption–portfolio strategies.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Nonlinear Science and Numerical Simulation
Communications in Nonlinear Science and Numerical Simulation MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
6.80
自引率
7.70%
发文量
378
审稿时长
78 days
期刊介绍: The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity. The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged. Topics of interest: Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity. No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信