Relative Koszul coresolutions and relative Betti numbers

IF 0.7 2区 数学 Q2 MATHEMATICS
Hideto Asashiba
{"title":"Relative Koszul coresolutions and relative Betti numbers","authors":"Hideto Asashiba","doi":"10.1016/j.jpaa.2025.107905","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>G</em> be a finitely generated right <em>A</em>-module for a finite-dimensional algebra <em>A</em> over a field <span><math><mi>k</mi></math></span>, and <span><math><mi>I</mi></math></span> the additive closure of <em>G</em>. We will define an <span><math><mi>I</mi></math></span>-relative Koszul coresolution <figure><img></figure> of an indecomposable direct summand <em>V</em> of <em>G</em>, and show that for a finitely generated <em>A</em>-module <em>M</em>, the <span><math><mi>I</mi></math></span>-relative <em>i</em>-th Betti number for <em>M</em> at <em>V</em> is given as the <span><math><mi>k</mi></math></span>-dimension of the <em>i</em>-th homology of the <span><math><mi>I</mi></math></span>-relative Koszul complex <figure><img></figure> of <em>M</em> at <em>V</em> for all <span><math><mi>i</mi><mo>≥</mo><mn>0</mn></math></span>. This is applied to investigate the minimal interval resolution/coresolution of a persistence module <em>M</em>, e.g., to check the interval decomposability of <em>M</em>, and to compute the interval approximation of <em>M</em>.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 3","pages":"Article 107905"},"PeriodicalIF":0.7000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404925000441","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let G be a finitely generated right A-module for a finite-dimensional algebra A over a field k, and I the additive closure of G. We will define an I-relative Koszul coresolution
of an indecomposable direct summand V of G, and show that for a finitely generated A-module M, the I-relative i-th Betti number for M at V is given as the k-dimension of the i-th homology of the I-relative Koszul complex
of M at V for all i0. This is applied to investigate the minimal interval resolution/coresolution of a persistence module M, e.g., to check the interval decomposability of M, and to compute the interval approximation of M.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信