Junzuo He , Shaoming Liao , Jie Cui , Yingbin Liu , Qiong Yi , Hai Liu , Chao Liu
{"title":"Multi-scale investigation on tunnel face failure and soil arching in unsaturated sandy ground","authors":"Junzuo He , Shaoming Liao , Jie Cui , Yingbin Liu , Qiong Yi , Hai Liu , Chao Liu","doi":"10.1016/j.tust.2025.106489","DOIUrl":null,"url":null,"abstract":"<div><div>Although universal in practical engineering, the soil arching effect induced by tunnel face unloading (TFU) in the unsaturated sandy ground (USG) hardly receives academic concerns for its complicacy. In this study, a physical model and a discrete element method (DEM) incorporating the interparticle capillary water force (ICWF) were established and verified. With the combination of experimental and numerical TFU, the intrinsic mechanism of soil arching effect in the USG was innovatively investigated from macroscale to mesoscale. The results indicate that the tunnel face limit support pressure in sandy ground decreases firstly, and then increases with the increase of saturation degree and its minimum value can be less than 22% of that in the dry sandy ground (DSG). Meanwhile, distinct from the global collapse in DSG, a self-stabilized soil arch emerges above the tunnel crown in USG and prevents the loosening zone from further development. With more effective stress transfer under the stronger soil arching effect, the cover-ratios of transition zone and weak deflection zone for the major principal stress in USG can decrease to 24% and increase to 47% respectively as compared to those in the DSG. Additionally, the coordinate number, weak contact proportion, porosity, and contact anisotropy can effectively reflect the <em>meso</em>-mechanical characteristics of soil arching effect in the USG. This work provides precious evidence for evaluating the tunnel face stability in the USG.</div></div>","PeriodicalId":49414,"journal":{"name":"Tunnelling and Underground Space Technology","volume":"159 ","pages":"Article 106489"},"PeriodicalIF":6.7000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tunnelling and Underground Space Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0886779825001270","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Although universal in practical engineering, the soil arching effect induced by tunnel face unloading (TFU) in the unsaturated sandy ground (USG) hardly receives academic concerns for its complicacy. In this study, a physical model and a discrete element method (DEM) incorporating the interparticle capillary water force (ICWF) were established and verified. With the combination of experimental and numerical TFU, the intrinsic mechanism of soil arching effect in the USG was innovatively investigated from macroscale to mesoscale. The results indicate that the tunnel face limit support pressure in sandy ground decreases firstly, and then increases with the increase of saturation degree and its minimum value can be less than 22% of that in the dry sandy ground (DSG). Meanwhile, distinct from the global collapse in DSG, a self-stabilized soil arch emerges above the tunnel crown in USG and prevents the loosening zone from further development. With more effective stress transfer under the stronger soil arching effect, the cover-ratios of transition zone and weak deflection zone for the major principal stress in USG can decrease to 24% and increase to 47% respectively as compared to those in the DSG. Additionally, the coordinate number, weak contact proportion, porosity, and contact anisotropy can effectively reflect the meso-mechanical characteristics of soil arching effect in the USG. This work provides precious evidence for evaluating the tunnel face stability in the USG.
期刊介绍:
Tunnelling and Underground Space Technology is an international journal which publishes authoritative articles encompassing the development of innovative uses of underground space and the results of high quality research into improved, more cost-effective techniques for the planning, geo-investigation, design, construction, operation and maintenance of underground and earth-sheltered structures. The journal provides an effective vehicle for the improved worldwide exchange of information on developments in underground technology - and the experience gained from its use - and is strongly committed to publishing papers on the interdisciplinary aspects of creating, planning, and regulating underground space.