Engineering Lithium–Magnesium Selectivity in Hydrated Polymer Membranes through Polymer Backbone Rigidity

IF 5.1 Q1 POLYMER SCIENCE
Paul R. Irving, Grace Sam, Soham Rane, Nikhil Thirumalai, Nico Marioni, Geoffrey M. Geise, Benny D. Freeman* and Venkat Ganesan*, 
{"title":"Engineering Lithium–Magnesium Selectivity in Hydrated Polymer Membranes through Polymer Backbone Rigidity","authors":"Paul R. Irving,&nbsp;Grace Sam,&nbsp;Soham Rane,&nbsp;Nikhil Thirumalai,&nbsp;Nico Marioni,&nbsp;Geoffrey M. Geise,&nbsp;Benny D. Freeman* and Venkat Ganesan*,&nbsp;","doi":"10.1021/acsmacrolett.4c0082810.1021/acsmacrolett.4c00828","DOIUrl":null,"url":null,"abstract":"<p >Using computer simulations and experiments, we demonstrate that polymer backbone rigidity can be used to tune selectivities and permeabilities of lithium over magnesium in hydrated polymer membranes. Coarse-grained molecular dynamics (CGMD) simulations suggest a strong dependence of cation diffusion coefficients on polymer segmental dynamics and cation-solvent coordination strength, with water content and backbone dynamics having distinct effects on transport properties. Experimentally, we synthesized 2-hydroxyethyl acrylate-<i>co</i>-ethyl acrylate (HEA-<i>co</i>-EA) and 2-hydroxyethyl methacrylate-<i>co</i>-methyl methacrylate (HEMA-<i>co</i>-MMA) membranes. These polymers have different levels of backbone flexibility while maintaining similar chemistry. LiCl and MgCl<sub>2</sub> salt permeabilities and sorption coefficients were measured for membranes with varying water content. Magnesium chloride permeability and diffusion coefficients show a stronger dependence on backbone dynamics than lithium chloride, whereas backbone dynamics has a minor impact on salt sorption. Overall, these factors allow permeability and selectivity of LiCl relative to MgCl<sub>2</sub> to be increased simultaneously by increasing both water content and backbone rigidity.</p>","PeriodicalId":18,"journal":{"name":"ACS Macro Letters","volume":"14 2","pages":"161–168 161–168"},"PeriodicalIF":5.1000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Macro Letters","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmacrolett.4c00828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Using computer simulations and experiments, we demonstrate that polymer backbone rigidity can be used to tune selectivities and permeabilities of lithium over magnesium in hydrated polymer membranes. Coarse-grained molecular dynamics (CGMD) simulations suggest a strong dependence of cation diffusion coefficients on polymer segmental dynamics and cation-solvent coordination strength, with water content and backbone dynamics having distinct effects on transport properties. Experimentally, we synthesized 2-hydroxyethyl acrylate-co-ethyl acrylate (HEA-co-EA) and 2-hydroxyethyl methacrylate-co-methyl methacrylate (HEMA-co-MMA) membranes. These polymers have different levels of backbone flexibility while maintaining similar chemistry. LiCl and MgCl2 salt permeabilities and sorption coefficients were measured for membranes with varying water content. Magnesium chloride permeability and diffusion coefficients show a stronger dependence on backbone dynamics than lithium chloride, whereas backbone dynamics has a minor impact on salt sorption. Overall, these factors allow permeability and selectivity of LiCl relative to MgCl2 to be increased simultaneously by increasing both water content and backbone rigidity.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.40
自引率
3.40%
发文量
209
审稿时长
1 months
期刊介绍: ACS Macro Letters publishes research in all areas of contemporary soft matter science in which macromolecules play a key role, including nanotechnology, self-assembly, supramolecular chemistry, biomaterials, energy generation and storage, and renewable/sustainable materials. Submissions to ACS Macro Letters should justify clearly the rapid disclosure of the key elements of the study. The scope of the journal includes high-impact research of broad interest in all areas of polymer science and engineering, including cross-disciplinary research that interfaces with polymer science. With the launch of ACS Macro Letters, all Communications that were formerly published in Macromolecules and Biomacromolecules will be published as Letters in ACS Macro Letters.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信