PAPreC: A Pipeline for Antigenicity Prediction Comparison Methods across Bacteria

IF 4.3 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Yasmmin C. Martins, Maiana O. Cerqueira e Costa, Miranda C. Palumbo, Dario F. Do Porto, Fábio L. Custódio, Raphael Trevizani and Marisa Fabiana Nicolás*, 
{"title":"PAPreC: A Pipeline for Antigenicity Prediction Comparison Methods across Bacteria","authors":"Yasmmin C. Martins,&nbsp;Maiana O. Cerqueira e Costa,&nbsp;Miranda C. Palumbo,&nbsp;Dario F. Do Porto,&nbsp;Fábio L. Custódio,&nbsp;Raphael Trevizani and Marisa Fabiana Nicolás*,&nbsp;","doi":"10.1021/acsomega.4c0714710.1021/acsomega.4c07147","DOIUrl":null,"url":null,"abstract":"<p >Antigenicity prediction plays a crucial role in vaccine development, antibody-based therapies, and diagnostic assays, as this predictive approach helps assess the potential of molecular structures to induce and recruit immune cells and drive antibody production. Several existing prediction methods, which target complete proteins and epitopes identified through reverse vaccinology, face limitations regarding input data constraints, feature extraction strategies, and insufficient flexibility for model evaluation and interpretation. This work presents PAPreC (Pipeline for Antigenicity Prediction Comparison), an open-source, versatile workflow (available at https://github.com/YasCoMa/paprec_nx_workflow) designed to address these challenges. PAPreC systematically examines three key factors: the selection of training data sets, feature extraction methods (including physicochemical descriptors and ESM-2 encoder-derived embeddings), and diverse classifiers. It provides automated model evaluation, interpretability through SHapley Additive exPlanations (SHAP) analysis, and applicability domain assessments, enabling researchers to identify optimal configurations for their specific data sets. Applying PAPreC to IEDB data as a reference, we demonstrate its effectiveness across the ESKAPE pathogen group. A case study involving <i><i>Pseudomonas aeruginosa</i></i> and <i>Staphylococcus aureus</i> shows that specific feature configurations are more suitable for different sequence types, and that ESM-2 embeddings enhance model performance. Moreover, our results indicate that separate models for Gram-positive and Gram-negative bacteria are not required. PAPreC offers a comprehensive, adaptable, and robust framework to streamline and improve antigenicity prediction for diverse bacterial data sets.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 6","pages":"5415–5429 5415–5429"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c07147","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.4c07147","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Antigenicity prediction plays a crucial role in vaccine development, antibody-based therapies, and diagnostic assays, as this predictive approach helps assess the potential of molecular structures to induce and recruit immune cells and drive antibody production. Several existing prediction methods, which target complete proteins and epitopes identified through reverse vaccinology, face limitations regarding input data constraints, feature extraction strategies, and insufficient flexibility for model evaluation and interpretation. This work presents PAPreC (Pipeline for Antigenicity Prediction Comparison), an open-source, versatile workflow (available at https://github.com/YasCoMa/paprec_nx_workflow) designed to address these challenges. PAPreC systematically examines three key factors: the selection of training data sets, feature extraction methods (including physicochemical descriptors and ESM-2 encoder-derived embeddings), and diverse classifiers. It provides automated model evaluation, interpretability through SHapley Additive exPlanations (SHAP) analysis, and applicability domain assessments, enabling researchers to identify optimal configurations for their specific data sets. Applying PAPreC to IEDB data as a reference, we demonstrate its effectiveness across the ESKAPE pathogen group. A case study involving Pseudomonas aeruginosa and Staphylococcus aureus shows that specific feature configurations are more suitable for different sequence types, and that ESM-2 embeddings enhance model performance. Moreover, our results indicate that separate models for Gram-positive and Gram-negative bacteria are not required. PAPreC offers a comprehensive, adaptable, and robust framework to streamline and improve antigenicity prediction for diverse bacterial data sets.

PAPreC:跨细菌抗原性预测比较方法的管道
抗原性预测在疫苗开发、基于抗体的治疗和诊断分析中起着至关重要的作用,因为这种预测方法有助于评估分子结构诱导和招募免疫细胞以及驱动抗体产生的潜力。几种现有的预测方法,其目标是通过反向疫苗学鉴定的完整蛋白质和表位,在输入数据约束、特征提取策略以及模型评估和解释的灵活性不足方面面临局限性。这项工作提出了PAPreC(抗原性预测比较管道),一个开源的,通用的工作流程(可在https://github.com/YasCoMa/paprec_nx_workflow上获得),旨在解决这些挑战。PAPreC系统地检查了三个关键因素:训练数据集的选择、特征提取方法(包括物理化学描述符和ESM-2编码器衍生的嵌入)和不同的分类器。它提供了自动模型评估,通过SHapley加性解释(SHAP)分析的可解释性,以及适用性领域评估,使研究人员能够为他们的特定数据集确定最佳配置。应用PAPreC对IEDB数据作为参考,我们证明了其在ESKAPE病原体组中的有效性。铜绿假单胞菌和金黄色葡萄球菌的案例研究表明,特定的特征配置更适合不同的序列类型,并且ESM-2嵌入增强了模型性能。此外,我们的结果表明,不需要单独的革兰氏阳性和革兰氏阴性细菌模型。PAPreC提供了一个全面的、适应性强的、强大的框架,以简化和改进不同细菌数据集的抗原性预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信