Analysis of rainfall abundance and drought occurrence and probability of flood and drought occurrence in Yellow River Basin based on Copula function family

IF 4.7 2区 地球科学 Q1 WATER RESOURCES
Yuping Han , Jinhang Li , Mengdie Zhao , Hui Guo , Chunying Wang , Huiping Huang , Runxiang Cao
{"title":"Analysis of rainfall abundance and drought occurrence and probability of flood and drought occurrence in Yellow River Basin based on Copula function family","authors":"Yuping Han ,&nbsp;Jinhang Li ,&nbsp;Mengdie Zhao ,&nbsp;Hui Guo ,&nbsp;Chunying Wang ,&nbsp;Huiping Huang ,&nbsp;Runxiang Cao","doi":"10.1016/j.ejrh.2025.102242","DOIUrl":null,"url":null,"abstract":"<div><h3>Study region</h3><div>The Yellow River Basin, China.</div></div><div><h3>Study focus</h3><div>Using Copula joint distribution models, this study delves into the analysis of wetness-dryness encounters and their evolving patterns in the all three reaches. The research specifically explores the probability of asynchronous and synchronous wetness-dryness encounters, providing valuable insights into the hydrological dynamics of the region. Additionally, the study constructs and simulates a Bayesian network model for flood and drought management based on the observed wetness-dryness patterns.</div></div><div><h3>New hydrological insights for the region</h3><div>The findings of this study reveal several noteworthy insights. Firstly, there is no significant trend in rainfall in the all three reaches, but periodic cycles of 5 years, 4 years, and 16 years are identified. Secondly, the probability of asynchronous wetness-dryness encounters is higher than synchronous encounters, with annual asynchronous probabilities of 54.46 %, 80.65 %, and 62.9 % in the upper, middle, and lower reaches, respectively. Thirdly, the overall probability of synchronous wetness-dryness encounters is relatively low, with concurrent dryness having the highest probability. Lastly, the study indicates an overall 50 % probability of floods and droughts in the Yellow River. The simulation results further highlight a 91 % probability of floods during wet years and an equal probability of droughts during dry years. These findings contribute to a theoretical foundation for optimizing and allocating water resources in the Yellow River Basin.</div></div>","PeriodicalId":48620,"journal":{"name":"Journal of Hydrology-Regional Studies","volume":"58 ","pages":"Article 102242"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology-Regional Studies","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214581825000667","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

Abstract

Study region

The Yellow River Basin, China.

Study focus

Using Copula joint distribution models, this study delves into the analysis of wetness-dryness encounters and their evolving patterns in the all three reaches. The research specifically explores the probability of asynchronous and synchronous wetness-dryness encounters, providing valuable insights into the hydrological dynamics of the region. Additionally, the study constructs and simulates a Bayesian network model for flood and drought management based on the observed wetness-dryness patterns.

New hydrological insights for the region

The findings of this study reveal several noteworthy insights. Firstly, there is no significant trend in rainfall in the all three reaches, but periodic cycles of 5 years, 4 years, and 16 years are identified. Secondly, the probability of asynchronous wetness-dryness encounters is higher than synchronous encounters, with annual asynchronous probabilities of 54.46 %, 80.65 %, and 62.9 % in the upper, middle, and lower reaches, respectively. Thirdly, the overall probability of synchronous wetness-dryness encounters is relatively low, with concurrent dryness having the highest probability. Lastly, the study indicates an overall 50 % probability of floods and droughts in the Yellow River. The simulation results further highlight a 91 % probability of floods during wet years and an equal probability of droughts during dry years. These findings contribute to a theoretical foundation for optimizing and allocating water resources in the Yellow River Basin.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Hydrology-Regional Studies
Journal of Hydrology-Regional Studies Earth and Planetary Sciences-Earth and Planetary Sciences (miscellaneous)
CiteScore
6.70
自引率
8.50%
发文量
284
审稿时长
60 days
期刊介绍: Journal of Hydrology: Regional Studies publishes original research papers enhancing the science of hydrology and aiming at region-specific problems, past and future conditions, analysis, review and solutions. The journal particularly welcomes research papers that deliver new insights into region-specific hydrological processes and responses to changing conditions, as well as contributions that incorporate interdisciplinarity and translational science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信