Evaluating the potential of airborne hyperspectral imagery in monitoring common beans with common bacterial blight at different infection stages

IF 4.4 1区 农林科学 Q1 AGRICULTURAL ENGINEERING
Binghan Jing, Jiachen Wang, Xin Zhang, Xiaoxiang Hou, Kunming Huang, Qianyu Wang, Yiwei Wang, Yaoxuan Jia, Meichen Feng, Wude Yang, Chao Wang
{"title":"Evaluating the potential of airborne hyperspectral imagery in monitoring common beans with common bacterial blight at different infection stages","authors":"Binghan Jing,&nbsp;Jiachen Wang,&nbsp;Xin Zhang,&nbsp;Xiaoxiang Hou,&nbsp;Kunming Huang,&nbsp;Qianyu Wang,&nbsp;Yiwei Wang,&nbsp;Yaoxuan Jia,&nbsp;Meichen Feng,&nbsp;Wude Yang,&nbsp;Chao Wang","doi":"10.1016/j.biosystemseng.2025.02.002","DOIUrl":null,"url":null,"abstract":"<div><div>Common bacterial blight (CBB) is the most destructive bacterial disease affecting the production of common beans, and timely detection of CBB is crucial to limiting its spread. In this study, correlation analysis and the ReliefF algorithm were used to select vegetation indices (VIs) and texture features (TFs) that are sensitive to CBB. The CBB monitoring model based on support vector machine regression (SVR), random forest regression (RFR), and K-nearest neighbor regression (KNNR) was established using the selected the VIs, TFs, and their combinations. Then, the impact of the spatial resolution on the disease monitoring accuracy was evaluated. In addition, the early infection monitoring model was further optimised. The results show that in the early infection stage, when the spatial resolution was 0.07 m, the window size was 7 × 7, and the independent variable was a combination of VIs and TFs, the R<sup>2</sup> of the monitoring model constructed via SVR was 0.72, which was 14.3% higher than that obtained for a 3 × 3 window (0.63). In the middle and late infection stages, the optimal spatial resolution was 0.1 m, and the monitoring model constructed using RFR and a combination of VIs and TFs performed the best, with R<sup>2</sup> values of 0.81 and 0.88, respectively. The research results indicate that selecting an appropriate spatial resolution and window size can effectively improve the model's CBB monitoring ability and can provide a reference for accurate monitoring of large-scale CBB of common beans using airborne or spaceborne imaging spectroscopy technology.</div></div>","PeriodicalId":9173,"journal":{"name":"Biosystems Engineering","volume":"251 ","pages":"Pages 145-158"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosystems Engineering","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1537511025000285","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Common bacterial blight (CBB) is the most destructive bacterial disease affecting the production of common beans, and timely detection of CBB is crucial to limiting its spread. In this study, correlation analysis and the ReliefF algorithm were used to select vegetation indices (VIs) and texture features (TFs) that are sensitive to CBB. The CBB monitoring model based on support vector machine regression (SVR), random forest regression (RFR), and K-nearest neighbor regression (KNNR) was established using the selected the VIs, TFs, and their combinations. Then, the impact of the spatial resolution on the disease monitoring accuracy was evaluated. In addition, the early infection monitoring model was further optimised. The results show that in the early infection stage, when the spatial resolution was 0.07 m, the window size was 7 × 7, and the independent variable was a combination of VIs and TFs, the R2 of the monitoring model constructed via SVR was 0.72, which was 14.3% higher than that obtained for a 3 × 3 window (0.63). In the middle and late infection stages, the optimal spatial resolution was 0.1 m, and the monitoring model constructed using RFR and a combination of VIs and TFs performed the best, with R2 values of 0.81 and 0.88, respectively. The research results indicate that selecting an appropriate spatial resolution and window size can effectively improve the model's CBB monitoring ability and can provide a reference for accurate monitoring of large-scale CBB of common beans using airborne or spaceborne imaging spectroscopy technology.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biosystems Engineering
Biosystems Engineering 农林科学-农业工程
CiteScore
10.60
自引率
7.80%
发文量
239
审稿时长
53 days
期刊介绍: Biosystems Engineering publishes research in engineering and the physical sciences that represent advances in understanding or modelling of the performance of biological systems for sustainable developments in land use and the environment, agriculture and amenity, bioproduction processes and the food chain. The subject matter of the journal reflects the wide range and interdisciplinary nature of research in engineering for biological systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信