Local vs regional neural air pollution forecasting models

IF 1.8 Q3 AUTOMATION & CONTROL SYSTEMS
Matteo Sangiorgio, Giorgio Guariso
{"title":"Local vs regional neural air pollution forecasting models","authors":"Matteo Sangiorgio,&nbsp;Giorgio Guariso","doi":"10.1016/j.ifacsc.2025.100298","DOIUrl":null,"url":null,"abstract":"<div><div>Selecting a suitable dataset to develop a data-based forecasting model is often problematic. This is particularly important in the case of air pollution, where concentration measures are scattered over large areas. On the one hand, the classical approach creates a single-station (local) forecasting model using only the data collected at the same station. This guarantees a training dataset that considers all the site’s specific characteristics. On the other hand, these data may be limited and not sufficient to develop a robust predictor. Thus, one may use data from other stations to complement the dataset or develop a unique model considering all the data available within a region/domain. While this approach may be prone to filtering high variations, it may consider information on peculiar episodes that have not occurred in the past to a specific station. This paper discusses the topic of air pollution forecasting using the example of several stations in the Padana Plain, Northern Italy. Local forecasting models are developed using LSTM neural networks for nitrogen dioxide and ozone and hourly data from 2010 to 2023 and then compared with regional models. All these models perform extremely well under various regression-based and classification-based performance indicators, except for a few sites with peculiar characteristics that can be considered at the border of the information domain.</div></div>","PeriodicalId":29926,"journal":{"name":"IFAC Journal of Systems and Control","volume":"31 ","pages":"Article 100298"},"PeriodicalIF":1.8000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC Journal of Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468601825000045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Selecting a suitable dataset to develop a data-based forecasting model is often problematic. This is particularly important in the case of air pollution, where concentration measures are scattered over large areas. On the one hand, the classical approach creates a single-station (local) forecasting model using only the data collected at the same station. This guarantees a training dataset that considers all the site’s specific characteristics. On the other hand, these data may be limited and not sufficient to develop a robust predictor. Thus, one may use data from other stations to complement the dataset or develop a unique model considering all the data available within a region/domain. While this approach may be prone to filtering high variations, it may consider information on peculiar episodes that have not occurred in the past to a specific station. This paper discusses the topic of air pollution forecasting using the example of several stations in the Padana Plain, Northern Italy. Local forecasting models are developed using LSTM neural networks for nitrogen dioxide and ozone and hourly data from 2010 to 2023 and then compared with regional models. All these models perform extremely well under various regression-based and classification-based performance indicators, except for a few sites with peculiar characteristics that can be considered at the border of the information domain.
局部与区域神经空气污染预测模型
选择合适的数据集来开发基于数据的预测模型通常是有问题的。在空气污染的情况下,这一点尤其重要,因为空气污染的浓度措施分散在大片地区。一方面,经典方法仅使用同一站点收集的数据创建单站点(局部)预测模型。这保证了训练数据集考虑了所有站点的特定特征。另一方面,这些数据可能是有限的,不足以开发一个稳健的预测器。因此,可以使用其他站点的数据来补充数据集,或者考虑到一个区域/领域内所有可用的数据,开发一个独特的模型。虽然这种方法可能倾向于过滤高变化,但它可能会考虑特定站点过去未发生的特殊事件的信息。本文以意大利北部帕达纳平原的几个气象站为例,讨论了空气污染的预报问题。利用LSTM神经网络建立了2010 ~ 2023年二氧化氮和臭氧逐时预报模型,并与区域预报模型进行了比较。所有这些模型在各种基于回归和基于分类的性能指标下都表现得非常好,除了一些具有特殊特征的站点,这些站点可以在信息域的边界上考虑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IFAC Journal of Systems and Control
IFAC Journal of Systems and Control AUTOMATION & CONTROL SYSTEMS-
CiteScore
3.70
自引率
5.30%
发文量
17
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信