Future groundwater drought analysis under data scarcity using MedCORDEX regional climatic models and machine learning: The case of the Haouz Aquifer

IF 4.7 2区 地球科学 Q1 WATER RESOURCES
El Bouazzaoui Imane , Ait Elbaz Aicha , Ait Brahim Yassine , Machay Hicham , Bougadir Blaid
{"title":"Future groundwater drought analysis under data scarcity using MedCORDEX regional climatic models and machine learning: The case of the Haouz Aquifer","authors":"El Bouazzaoui Imane ,&nbsp;Ait Elbaz Aicha ,&nbsp;Ait Brahim Yassine ,&nbsp;Machay Hicham ,&nbsp;Bougadir Blaid","doi":"10.1016/j.ejrh.2025.102249","DOIUrl":null,"url":null,"abstract":"<div><h3>Study region</h3><div>The Haouz aquifer, situated in central Morocco, a data-scarce region.</div></div><div><h3>Study focus</h3><div>Groundwater resources in semi-arid regions face increasing threats from climate change, particularly due to warming and overexploitation. However, data scarcity limits the ability to monitor and predict groundwater changes accurately. This study addresses this challenge by predicting future drought conditions in the Haouz aquifer using SPI and SPEI climatic drought indices, Machine Learning models, and Med-CORDEX regional climate models under RCP 4.5 and 8.5 scenarios.</div></div><div><h3>New Hydrological Insights for the Region</h3><div>This study is the first in the region to predict groundwater drought based on precipitation and temperature data, relying on the principle of drought propagation. The comparative analysis of the machine learning models shows that Random Forest stands out for its superior predictive performance, influenced by annual trends and long-term climatic indices, with significant contributions from geographical variables. The results indicate a combined influence of land use and natural characteristics on the drought of the Haouz aquifer, following a longitudinal variation and showing a trend towards decreasing variability from the mid- to long-term. Additionally, extreme drought conditions are expected to intensify in most study points particularly under RCP 8.5. The eastern area of the aquifer remains the least impacted by this future trend, continuing to reflect normal drought conditions even in the long term under RCP 8.5.</div></div>","PeriodicalId":48620,"journal":{"name":"Journal of Hydrology-Regional Studies","volume":"58 ","pages":"Article 102249"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology-Regional Studies","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214581825000734","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

Abstract

Study region

The Haouz aquifer, situated in central Morocco, a data-scarce region.

Study focus

Groundwater resources in semi-arid regions face increasing threats from climate change, particularly due to warming and overexploitation. However, data scarcity limits the ability to monitor and predict groundwater changes accurately. This study addresses this challenge by predicting future drought conditions in the Haouz aquifer using SPI and SPEI climatic drought indices, Machine Learning models, and Med-CORDEX regional climate models under RCP 4.5 and 8.5 scenarios.

New Hydrological Insights for the Region

This study is the first in the region to predict groundwater drought based on precipitation and temperature data, relying on the principle of drought propagation. The comparative analysis of the machine learning models shows that Random Forest stands out for its superior predictive performance, influenced by annual trends and long-term climatic indices, with significant contributions from geographical variables. The results indicate a combined influence of land use and natural characteristics on the drought of the Haouz aquifer, following a longitudinal variation and showing a trend towards decreasing variability from the mid- to long-term. Additionally, extreme drought conditions are expected to intensify in most study points particularly under RCP 8.5. The eastern area of the aquifer remains the least impacted by this future trend, continuing to reflect normal drought conditions even in the long term under RCP 8.5.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Hydrology-Regional Studies
Journal of Hydrology-Regional Studies Earth and Planetary Sciences-Earth and Planetary Sciences (miscellaneous)
CiteScore
6.70
自引率
8.50%
发文量
284
审稿时长
60 days
期刊介绍: Journal of Hydrology: Regional Studies publishes original research papers enhancing the science of hydrology and aiming at region-specific problems, past and future conditions, analysis, review and solutions. The journal particularly welcomes research papers that deliver new insights into region-specific hydrological processes and responses to changing conditions, as well as contributions that incorporate interdisciplinarity and translational science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信