Impact of different scale-aware cumulus parameterizations on precipitation forecasts over Korea

IF 4.5 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
Ji-Young Han
{"title":"Impact of different scale-aware cumulus parameterizations on precipitation forecasts over Korea","authors":"Ji-Young Han","doi":"10.1016/j.atmosres.2025.107990","DOIUrl":null,"url":null,"abstract":"<div><div>This study aims to evaluate and improve the performance of the scale-aware cumulus parameterization scheme (CPS) in the Korean Integrated Model (KIM), referred to as KSAS. The performance of the KSAS for simulating precipitation over Korea is first evaluated in comparison with other scale-aware CPSs available in the Weather Research and Forecasting (WRF) model by conducting a series of experiments at multiple horizontal resolutions, including the gray zone. The results show that the KSAS significantly improves precipitation forecast skill compared to its original version. However, its performance is lower than that of the other scale-aware CPSs at 27-km and 9-km spatial resolutions due to the substantial contribution of cumulus parameterization. To address issues in the scale-aware parameterization of KSAS, the method for defining the convective updraft fraction is revised to adopt a more physically based approach. The WRF simulation results demonstrate improved precipitation forecast skill with the revised scale-aware parameterization at the gray-zone resolution, where the contribution of cumulus parameterization is significantly reduced. Further evaluation of the revised scheme in KIM also reveals enhanced medium-range forecast skill for both large-scale fields and precipitation at horizontal resolutions of NE360NP3 (∼12 km) and NE576NP3 (∼8 km). The warm bias in the mid-latitudes of the Northern Hemisphere is alleviated by reduced convective heating. Notably, the revised scheme exhibits a pronounced improvement in the skill for forecasting precipitation over the Korean Peninsula, better capturing the pattern and intensity of the precipitation core for heavy rainfall events, as confirmed by higher skill scores.</div></div>","PeriodicalId":8600,"journal":{"name":"Atmospheric Research","volume":"317 ","pages":"Article 107990"},"PeriodicalIF":4.5000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169809525000821","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to evaluate and improve the performance of the scale-aware cumulus parameterization scheme (CPS) in the Korean Integrated Model (KIM), referred to as KSAS. The performance of the KSAS for simulating precipitation over Korea is first evaluated in comparison with other scale-aware CPSs available in the Weather Research and Forecasting (WRF) model by conducting a series of experiments at multiple horizontal resolutions, including the gray zone. The results show that the KSAS significantly improves precipitation forecast skill compared to its original version. However, its performance is lower than that of the other scale-aware CPSs at 27-km and 9-km spatial resolutions due to the substantial contribution of cumulus parameterization. To address issues in the scale-aware parameterization of KSAS, the method for defining the convective updraft fraction is revised to adopt a more physically based approach. The WRF simulation results demonstrate improved precipitation forecast skill with the revised scale-aware parameterization at the gray-zone resolution, where the contribution of cumulus parameterization is significantly reduced. Further evaluation of the revised scheme in KIM also reveals enhanced medium-range forecast skill for both large-scale fields and precipitation at horizontal resolutions of NE360NP3 (∼12 km) and NE576NP3 (∼8 km). The warm bias in the mid-latitudes of the Northern Hemisphere is alleviated by reduced convective heating. Notably, the revised scheme exhibits a pronounced improvement in the skill for forecasting precipitation over the Korean Peninsula, better capturing the pattern and intensity of the precipitation core for heavy rainfall events, as confirmed by higher skill scores.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Atmospheric Research
Atmospheric Research 地学-气象与大气科学
CiteScore
9.40
自引率
10.90%
发文量
460
审稿时长
47 days
期刊介绍: The journal publishes scientific papers (research papers, review articles, letters and notes) dealing with the part of the atmosphere where meteorological events occur. Attention is given to all processes extending from the earth surface to the tropopause, but special emphasis continues to be devoted to the physics of clouds, mesoscale meteorology and air pollution, i.e. atmospheric aerosols; microphysical processes; cloud dynamics and thermodynamics; numerical simulation, climatology, climate change and weather modification.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信