Emma L. Arévalo-Salina , Takuya Nishigaki , Leticia Olvera , Martin González-Andrade , Wendy Xolalpa-Villanueva , Edith O. López-Romero , Xavier Soberón , Gloria Saab-Rincón
{"title":"Change in selectivity of estrogen receptor alpha ligand-binding domain by mutations at residues H524/L525","authors":"Emma L. Arévalo-Salina , Takuya Nishigaki , Leticia Olvera , Martin González-Andrade , Wendy Xolalpa-Villanueva , Edith O. López-Romero , Xavier Soberón , Gloria Saab-Rincón","doi":"10.1016/j.bbagen.2025.130775","DOIUrl":null,"url":null,"abstract":"<div><div>The estrogen receptor alpha (ERα) features a large ligand-binding pocket capable of accommodating a variety of conformationally diverse molecules, each eliciting unique cellular responses. This structural plasticity facilitates various conformational changes, exposing different interaction surfaces for cellular proteins, triggering a myriad of biological outcomes. Alterations in the ligand-binding domain, particularly through amino acid substitutions, can modify the recognition and selectivity of ERα for agonists versus antagonists. In our study, we engineered a small library of ERα variants by modifying residues 524 and 525. These modifications resulted in variants with up to seventy-fold increased selectivity for the antagonist endoxifen and up to fifty-fold increased selectivity for the antagonist 4-hydroxytamoxifen (4-OHT) over the natural ligand estradiol. Analyzing these variants elucidates the critical roles of residues 524 and 525 in determining agonist specificity for estradiol. This advancement holds significant potential for developing selective recognition molecules, a crucial step towards creating a biosensor for endoxifen, the active metabolite used in breast cancer treatment.</div></div>","PeriodicalId":8800,"journal":{"name":"Biochimica et biophysica acta. General subjects","volume":"1869 4","pages":"Article 130775"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. General subjects","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304416525000200","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The estrogen receptor alpha (ERα) features a large ligand-binding pocket capable of accommodating a variety of conformationally diverse molecules, each eliciting unique cellular responses. This structural plasticity facilitates various conformational changes, exposing different interaction surfaces for cellular proteins, triggering a myriad of biological outcomes. Alterations in the ligand-binding domain, particularly through amino acid substitutions, can modify the recognition and selectivity of ERα for agonists versus antagonists. In our study, we engineered a small library of ERα variants by modifying residues 524 and 525. These modifications resulted in variants with up to seventy-fold increased selectivity for the antagonist endoxifen and up to fifty-fold increased selectivity for the antagonist 4-hydroxytamoxifen (4-OHT) over the natural ligand estradiol. Analyzing these variants elucidates the critical roles of residues 524 and 525 in determining agonist specificity for estradiol. This advancement holds significant potential for developing selective recognition molecules, a crucial step towards creating a biosensor for endoxifen, the active metabolite used in breast cancer treatment.
期刊介绍:
BBA General Subjects accepts for submission either original, hypothesis-driven studies or reviews covering subjects in biochemistry and biophysics that are considered to have general interest for a wide audience. Manuscripts with interdisciplinary approaches are especially encouraged.