Using upper and lower bounds to estimate indirect influence probability in social networks under independent cascade model

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Pei Li , Qisong Xie , Wuyi Chen , Qiang Yang , Shuwei Guo
{"title":"Using upper and lower bounds to estimate indirect influence probability in social networks under independent cascade model","authors":"Pei Li ,&nbsp;Qisong Xie ,&nbsp;Wuyi Chen ,&nbsp;Qiang Yang ,&nbsp;Shuwei Guo","doi":"10.1016/j.physa.2025.130430","DOIUrl":null,"url":null,"abstract":"<div><div>Nowadays, popular social networks have become important media for many companies to conduct viral marketing, due to their low costs and high efficiencies for information diffusion. However, the fundamental problem of how to calculate the indirect influence probability between users who are not directly connected in social networks has not been well addressed, which is critical for problems like influence maximization and source detection. In this paper, to estimate this indirect influence probability under the independent cascade model, we propose two types of algorithms: the first type originates from Dijkstra’s algorithm, and the second type is based on graph compression. From these algorithms, we provide 4 lower and 2 upper bounds for the indirect influence probability. The performances of these bounds are investigated through computational experiments, from which we observe that the accuracies of some bounds may vary with propagation intensity, and the upper bounds seem to achieve better results than the lower ones. We believe that the findings in this paper can introduce new approaches for the indirect influence probability estimation problem and provide insights in understanding the diffusion dynamics in social networks.</div></div>","PeriodicalId":20152,"journal":{"name":"Physica A: Statistical Mechanics and its Applications","volume":"662 ","pages":"Article 130430"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica A: Statistical Mechanics and its Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378437125000822","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Nowadays, popular social networks have become important media for many companies to conduct viral marketing, due to their low costs and high efficiencies for information diffusion. However, the fundamental problem of how to calculate the indirect influence probability between users who are not directly connected in social networks has not been well addressed, which is critical for problems like influence maximization and source detection. In this paper, to estimate this indirect influence probability under the independent cascade model, we propose two types of algorithms: the first type originates from Dijkstra’s algorithm, and the second type is based on graph compression. From these algorithms, we provide 4 lower and 2 upper bounds for the indirect influence probability. The performances of these bounds are investigated through computational experiments, from which we observe that the accuracies of some bounds may vary with propagation intensity, and the upper bounds seem to achieve better results than the lower ones. We believe that the findings in this paper can introduce new approaches for the indirect influence probability estimation problem and provide insights in understanding the diffusion dynamics in social networks.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
9.10%
发文量
852
审稿时长
6.6 months
期刊介绍: Physica A: Statistical Mechanics and its Applications Recognized by the European Physical Society Physica A publishes research in the field of statistical mechanics and its applications. Statistical mechanics sets out to explain the behaviour of macroscopic systems by studying the statistical properties of their microscopic constituents. Applications of the techniques of statistical mechanics are widespread, and include: applications to physical systems such as solids, liquids and gases; applications to chemical and biological systems (colloids, interfaces, complex fluids, polymers and biopolymers, cell physics); and other interdisciplinary applications to for instance biological, economical and sociological systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信