Unlocking the potential of carrier-selective contacts: Key insights for designing c-Si solar cells with efficiency beyond 28 %

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS
Paul Procel-Moya, Yifeng Zhao, Olindo Isabella
{"title":"Unlocking the potential of carrier-selective contacts: Key insights for designing c-Si solar cells with efficiency beyond 28 %","authors":"Paul Procel-Moya,&nbsp;Yifeng Zhao,&nbsp;Olindo Isabella","doi":"10.1016/j.solmat.2025.113504","DOIUrl":null,"url":null,"abstract":"<div><div>Crystalline silicon (c-Si) solar cells are rapidly establishing new efficiency frontiers, with front/back-contacted (FBC) designs now exceeding 26.8 % power conversion efficiency (PCE) and interdigitated back-contacted (IBC) cells surger limitepassing 27 %. This progress is driving a shift from traditional FBC PERC architectures to high-performance TOPCon, SHJ, and IBC configurations, with carrier-selective contacts (CSCs) at the core of these breakthroughs. In this work, we identify three critical factors underpinning CSC effectiveness: the work function of contact layers, energy barriers at heterointerfaces, and energy alignment across the stack of layers forming the CSC. By using advanced numerical simulations, we establish a framework for evaluating and optimizing CSC designs, including state-of-the-art poly-Si, SHJ, and dopant-free structures. We also introduce novel architectures based on TCO materials with potentially simpler manufacturing processes. Our simulations reveal that advanced FBC structures, can reach PCEs up to 28 % deploying localized CSCs architecture. In optimized IBC configurations, efficiencies as high as 28.64 % are achievable. For both, FBC and IBC configurations patterning limitations remain a barrier to theoretical efficiency peaks. Future advances in precision patterning could further close this gap, pushing c-Si solar cells closer to their intrinsic limits. This study provides a roadmap for high-efficiency CSC integration in next-generation c-Si solar cells, establishing pathways to achieve performance over 28 % and accelerating the evolution of photovoltaic technology.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"285 ","pages":"Article 113504"},"PeriodicalIF":6.3000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024825001059","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Crystalline silicon (c-Si) solar cells are rapidly establishing new efficiency frontiers, with front/back-contacted (FBC) designs now exceeding 26.8 % power conversion efficiency (PCE) and interdigitated back-contacted (IBC) cells surger limitepassing 27 %. This progress is driving a shift from traditional FBC PERC architectures to high-performance TOPCon, SHJ, and IBC configurations, with carrier-selective contacts (CSCs) at the core of these breakthroughs. In this work, we identify three critical factors underpinning CSC effectiveness: the work function of contact layers, energy barriers at heterointerfaces, and energy alignment across the stack of layers forming the CSC. By using advanced numerical simulations, we establish a framework for evaluating and optimizing CSC designs, including state-of-the-art poly-Si, SHJ, and dopant-free structures. We also introduce novel architectures based on TCO materials with potentially simpler manufacturing processes. Our simulations reveal that advanced FBC structures, can reach PCEs up to 28 % deploying localized CSCs architecture. In optimized IBC configurations, efficiencies as high as 28.64 % are achievable. For both, FBC and IBC configurations patterning limitations remain a barrier to theoretical efficiency peaks. Future advances in precision patterning could further close this gap, pushing c-Si solar cells closer to their intrinsic limits. This study provides a roadmap for high-efficiency CSC integration in next-generation c-Si solar cells, establishing pathways to achieve performance over 28 % and accelerating the evolution of photovoltaic technology.
释放载流子选择性接触的潜力:设计效率超过28%的c-Si太阳能电池的关键见解
晶体硅(c-Si)太阳能电池正在迅速建立新的效率前沿,前/后接触(FBC)设计现在超过26.8%的功率转换效率(PCE),交叉后接触(IBC)电池的极限超过27%。这一进展推动了传统FBC PERC架构向高性能TOPCon、SHJ和IBC架构的转变,而这些突破的核心是载波选择触点(CSCs)。在这项工作中,我们确定了支撑CSC有效性的三个关键因素:接触层的功函数,异质界面的能量垒,以及形成CSC的层堆叠之间的能量排列。通过使用先进的数值模拟,我们建立了评估和优化CSC设计的框架,包括最先进的多晶硅,SHJ和无掺杂结构。我们还介绍了基于TCO材料的新型架构,其制造过程可能更简单。我们的模拟表明,先进的FBC结构可以达到高达28%的pce,部署本地化的CSCs架构。在优化的IBC配置中,效率可高达28.64%。对于这两种情况,FBC和IBC配置模式的限制仍然是达到理论效率峰值的障碍。未来在精确模式方面的进步可能会进一步缩小这一差距,推动碳硅太阳能电池更接近其内在极限。该研究为下一代c-Si太阳能电池的高效CSC集成提供了路线图,建立了实现性能超过28%的途径,并加速了光伏技术的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信