{"title":"Unlocking the potential of carrier-selective contacts: Key insights for designing c-Si solar cells with efficiency beyond 28 %","authors":"Paul Procel-Moya, Yifeng Zhao, Olindo Isabella","doi":"10.1016/j.solmat.2025.113504","DOIUrl":null,"url":null,"abstract":"<div><div>Crystalline silicon (c-Si) solar cells are rapidly establishing new efficiency frontiers, with front/back-contacted (FBC) designs now exceeding 26.8 % power conversion efficiency (PCE) and interdigitated back-contacted (IBC) cells surger limitepassing 27 %. This progress is driving a shift from traditional FBC PERC architectures to high-performance TOPCon, SHJ, and IBC configurations, with carrier-selective contacts (CSCs) at the core of these breakthroughs. In this work, we identify three critical factors underpinning CSC effectiveness: the work function of contact layers, energy barriers at heterointerfaces, and energy alignment across the stack of layers forming the CSC. By using advanced numerical simulations, we establish a framework for evaluating and optimizing CSC designs, including state-of-the-art poly-Si, SHJ, and dopant-free structures. We also introduce novel architectures based on TCO materials with potentially simpler manufacturing processes. Our simulations reveal that advanced FBC structures, can reach PCEs up to 28 % deploying localized CSCs architecture. In optimized IBC configurations, efficiencies as high as 28.64 % are achievable. For both, FBC and IBC configurations patterning limitations remain a barrier to theoretical efficiency peaks. Future advances in precision patterning could further close this gap, pushing c-Si solar cells closer to their intrinsic limits. This study provides a roadmap for high-efficiency CSC integration in next-generation c-Si solar cells, establishing pathways to achieve performance over 28 % and accelerating the evolution of photovoltaic technology.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"285 ","pages":"Article 113504"},"PeriodicalIF":6.3000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024825001059","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Crystalline silicon (c-Si) solar cells are rapidly establishing new efficiency frontiers, with front/back-contacted (FBC) designs now exceeding 26.8 % power conversion efficiency (PCE) and interdigitated back-contacted (IBC) cells surger limitepassing 27 %. This progress is driving a shift from traditional FBC PERC architectures to high-performance TOPCon, SHJ, and IBC configurations, with carrier-selective contacts (CSCs) at the core of these breakthroughs. In this work, we identify three critical factors underpinning CSC effectiveness: the work function of contact layers, energy barriers at heterointerfaces, and energy alignment across the stack of layers forming the CSC. By using advanced numerical simulations, we establish a framework for evaluating and optimizing CSC designs, including state-of-the-art poly-Si, SHJ, and dopant-free structures. We also introduce novel architectures based on TCO materials with potentially simpler manufacturing processes. Our simulations reveal that advanced FBC structures, can reach PCEs up to 28 % deploying localized CSCs architecture. In optimized IBC configurations, efficiencies as high as 28.64 % are achievable. For both, FBC and IBC configurations patterning limitations remain a barrier to theoretical efficiency peaks. Future advances in precision patterning could further close this gap, pushing c-Si solar cells closer to their intrinsic limits. This study provides a roadmap for high-efficiency CSC integration in next-generation c-Si solar cells, establishing pathways to achieve performance over 28 % and accelerating the evolution of photovoltaic technology.
期刊介绍:
Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.