Tropical Cyclone Intensity Prediction using Bayesian Machine Learning with Marine Predators Algorithm on Satellite Cloud Imagery

IF 6 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Mahmoud Ragab
{"title":"Tropical Cyclone Intensity Prediction using Bayesian Machine Learning with Marine Predators Algorithm on Satellite Cloud Imagery","authors":"Mahmoud Ragab","doi":"10.1016/j.asej.2025.103316","DOIUrl":null,"url":null,"abstract":"<div><div>Due to its wide range of associated hazards, tropical cyclones (TC) become the costliest natural disaster worldwide. A correct diagnosis model for the TC intensity can save property and lives. Unfortunately, intensity forecasting of TC has been a bottleneck and has made it difficult to forecast weather. Several existing approaches and techniques make a diagnosis of TC wind speed through the satellite data at the specified time with varying success. Deep learning (DL)-based intensity forecasting has recently held great promise in surpassing conventional approaches. DL-based techniques have been developed in geosciences to replace traditional methods. However, weather forecasting is uncertain due to the Earth system’s nonlinearity, complexity, and chaotic effects.<!--> <!-->Thus, this manuscript develops a new Bayesian Machine Learning with Marine Predators Algorithm for TC Intensity Prediction (BMLMPA-TCIP) approach. The major goal of the BMLMPA-TCIP model is to estimate the level of the TCs on satellite cloud images. To accomplish this, the BMLMPA-TCIP technique utilizes the Gaussian filtering (GF) approach to eradicate the noise in the cloud images. Additionally, the extraction of useful feature vectors is performed by using the capsule network (CapsNet) technique. Moreover, the MPA method accomplishes the hyperparameter tuning of the CapsNet method. Lastly, the BMLMPA-TCIP technique utilizes the Bayesian Belief Network (BBN) method to predict TC intensity. To authorize the performance of the BMLMPA-TCIP approach, a wide variety of experiments are performed under the TC image dataset. The experimental validation of the BMLMPA-TCIP approach illustrates a superior RMSE value of 5.89 over existing techniques.</div></div>","PeriodicalId":48648,"journal":{"name":"Ain Shams Engineering Journal","volume":"16 3","pages":"Article 103316"},"PeriodicalIF":6.0000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ain Shams Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2090447925000577","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Due to its wide range of associated hazards, tropical cyclones (TC) become the costliest natural disaster worldwide. A correct diagnosis model for the TC intensity can save property and lives. Unfortunately, intensity forecasting of TC has been a bottleneck and has made it difficult to forecast weather. Several existing approaches and techniques make a diagnosis of TC wind speed through the satellite data at the specified time with varying success. Deep learning (DL)-based intensity forecasting has recently held great promise in surpassing conventional approaches. DL-based techniques have been developed in geosciences to replace traditional methods. However, weather forecasting is uncertain due to the Earth system’s nonlinearity, complexity, and chaotic effects. Thus, this manuscript develops a new Bayesian Machine Learning with Marine Predators Algorithm for TC Intensity Prediction (BMLMPA-TCIP) approach. The major goal of the BMLMPA-TCIP model is to estimate the level of the TCs on satellite cloud images. To accomplish this, the BMLMPA-TCIP technique utilizes the Gaussian filtering (GF) approach to eradicate the noise in the cloud images. Additionally, the extraction of useful feature vectors is performed by using the capsule network (CapsNet) technique. Moreover, the MPA method accomplishes the hyperparameter tuning of the CapsNet method. Lastly, the BMLMPA-TCIP technique utilizes the Bayesian Belief Network (BBN) method to predict TC intensity. To authorize the performance of the BMLMPA-TCIP approach, a wide variety of experiments are performed under the TC image dataset. The experimental validation of the BMLMPA-TCIP approach illustrates a superior RMSE value of 5.89 over existing techniques.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ain Shams Engineering Journal
Ain Shams Engineering Journal Engineering-General Engineering
CiteScore
10.80
自引率
13.30%
发文量
441
审稿时长
49 weeks
期刊介绍: in Shams Engineering Journal is an international journal devoted to publication of peer reviewed original high-quality research papers and review papers in both traditional topics and those of emerging science and technology. Areas of both theoretical and fundamental interest as well as those concerning industrial applications, emerging instrumental techniques and those which have some practical application to an aspect of human endeavor, such as the preservation of the environment, health, waste disposal are welcome. The overall focus is on original and rigorous scientific research results which have generic significance. Ain Shams Engineering Journal focuses upon aspects of mechanical engineering, electrical engineering, civil engineering, chemical engineering, petroleum engineering, environmental engineering, architectural and urban planning engineering. Papers in which knowledge from other disciplines is integrated with engineering are especially welcome like nanotechnology, material sciences, and computational methods as well as applied basic sciences: engineering mathematics, physics and chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信