Milk-derived exosome-loaded SS31 as a novel strategy to mitigate UV-induced photodamage in skin

IF 3.7 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ding Luo , Yanhong Mao , Shengni Zhang , Shengqiang Shen , Xiaohu Ge , Litao Zhang
{"title":"Milk-derived exosome-loaded SS31 as a novel strategy to mitigate UV-induced photodamage in skin","authors":"Ding Luo ,&nbsp;Yanhong Mao ,&nbsp;Shengni Zhang ,&nbsp;Shengqiang Shen ,&nbsp;Xiaohu Ge ,&nbsp;Litao Zhang","doi":"10.1016/j.jphotobiol.2025.113125","DOIUrl":null,"url":null,"abstract":"<div><div>It is widely recognized that ultraviolet (UV) radiation primarily catalyses photodamage in the skin by generating reactive oxygen species (ROS). In this study, we developed a novel antioxidant complex, Exo-SS31, by loading the antioxidant peptide SS31 (also known as MTP-131, elamipretide) into milk-derived exosomes. Our findings indicate that Exo-SS31 is an effective antioxidant capable of mitigating Human dermal fibroblast (HDF) damage induced by ultraviolet exposure, suppressing ROS production, and achieving greater therapeutic efficacy than SS31 alone. This complex can regulate the levels of superoxide dismutase (SOD) and glutathione (GSH) within the skin, inhibit the expression of proteins in pathways such as pMAPK and AP-1 triggered by UV radiation, and reduce the expression of the matrix metalloproteinases MMP1 and MMP3. Through these mechanisms, Exo-SS31 effectively prevents collagen degradation in the dermis and inhibits ultraviolet-induced photodamage. The use of milk-derived exosomes as carriers for antioxidant peptides represents a promising strategy to increase the bioavailability of peptide-based therapeutics.</div></div>","PeriodicalId":16772,"journal":{"name":"Journal of photochemistry and photobiology. B, Biology","volume":"265 ","pages":"Article 113125"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of photochemistry and photobiology. B, Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1011134425000284","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

It is widely recognized that ultraviolet (UV) radiation primarily catalyses photodamage in the skin by generating reactive oxygen species (ROS). In this study, we developed a novel antioxidant complex, Exo-SS31, by loading the antioxidant peptide SS31 (also known as MTP-131, elamipretide) into milk-derived exosomes. Our findings indicate that Exo-SS31 is an effective antioxidant capable of mitigating Human dermal fibroblast (HDF) damage induced by ultraviolet exposure, suppressing ROS production, and achieving greater therapeutic efficacy than SS31 alone. This complex can regulate the levels of superoxide dismutase (SOD) and glutathione (GSH) within the skin, inhibit the expression of proteins in pathways such as pMAPK and AP-1 triggered by UV radiation, and reduce the expression of the matrix metalloproteinases MMP1 and MMP3. Through these mechanisms, Exo-SS31 effectively prevents collagen degradation in the dermis and inhibits ultraviolet-induced photodamage. The use of milk-derived exosomes as carriers for antioxidant peptides represents a promising strategy to increase the bioavailability of peptide-based therapeutics.

Abstract Image

乳源性外泌体负载SS31作为减轻紫外线引起的皮肤光损伤的新策略
人们普遍认为,紫外线(UV)辐射主要通过产生活性氧(ROS)来催化皮肤的光损伤。在这项研究中,我们通过将抗氧化肽SS31(也称为MTP-131, elamipretide)装载到牛奶衍生的外泌体中,开发了一种新的抗氧化复合物Exo-SS31。我们的研究结果表明,Exo-SS31是一种有效的抗氧化剂,能够减轻紫外线照射引起的人真皮成纤维细胞(HDF)损伤,抑制ROS的产生,并且比单独SS31具有更高的治疗效果。该复合物可以调节皮肤内超氧化物歧化酶(SOD)和谷胱甘肽(GSH)的水平,抑制紫外线辐射触发的pMAPK和AP-1等通路中蛋白质的表达,并降低基质金属蛋白酶MMP1和MMP3的表达。通过这些机制,Exo-SS31有效地阻止真皮胶原降解,抑制紫外线引起的光损伤。使用牛奶衍生的外泌体作为抗氧化肽的载体代表了一种有希望的策略,以提高基于肽的治疗方法的生物利用度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.10
自引率
1.90%
发文量
161
审稿时长
37 days
期刊介绍: The Journal of Photochemistry and Photobiology B: Biology provides a forum for the publication of papers relating to the various aspects of photobiology, as well as a means for communication in this multidisciplinary field. The scope includes: - Bioluminescence - Chronobiology - DNA repair - Environmental photobiology - Nanotechnology in photobiology - Photocarcinogenesis - Photochemistry of biomolecules - Photodynamic therapy - Photomedicine - Photomorphogenesis - Photomovement - Photoreception - Photosensitization - Photosynthesis - Phototechnology - Spectroscopy of biological systems - UV and visible radiation effects and vision.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信