Plot-scale population estimation modeling based on residential plot form clustering and locational attractiveness analysis

IF 7.1 1区 地球科学 Q1 ENVIRONMENTAL STUDIES
Youmei Peng, Quan Liu
{"title":"Plot-scale population estimation modeling based on residential plot form clustering and locational attractiveness analysis","authors":"Youmei Peng,&nbsp;Quan Liu","doi":"10.1016/j.compenvurbsys.2025.102257","DOIUrl":null,"url":null,"abstract":"<div><div>In many regions, urbanization has advanced to a stage that requires urban renewal, making precise population data essential for effective regional renewal and sustainable development. Therefore, this paper aims to disaggregate Jiedao-level (an administrative unit under the district) census population data to the Plot level. From an urban morphology perspective, the Gaussian Mixture Model (GMM) clustering algorithm was applied to classify the form of residential plots, assigning a type parameter for each type: the per capita housing area, to describe population density differences among the types. We then used Pearson correlation analysis to assess the relationship between POI density and population density at various bandwidths, identifying the optimal bandwidth for different POI types and calculating the overall POI density for each plot to evaluate its locational attractiveness. A regression model was established using per capita housing area, POI density, and total building area to derive population weight layers for estimating population at the plot level. The results of accuracy assessment show that using the morphological type parameter can effectively improve the estimation accuracy at plot scale, especially in areas with diverse land-use patterns and lower population density. However, our optimized locational attractiveness calculation method shows only a slight improvement to the method using a fixed bandwidth. This study develops a more accurate population estimation method of plot-level based on morphological classification, and highlights the population distribution characteristics of different types of residential plots, aiding urban decision-makers in developing targeted strategies for housing optimization and community resource allocation.</div></div>","PeriodicalId":48241,"journal":{"name":"Computers Environment and Urban Systems","volume":"118 ","pages":"Article 102257"},"PeriodicalIF":7.1000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers Environment and Urban Systems","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0198971525000109","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
引用次数: 0

Abstract

In many regions, urbanization has advanced to a stage that requires urban renewal, making precise population data essential for effective regional renewal and sustainable development. Therefore, this paper aims to disaggregate Jiedao-level (an administrative unit under the district) census population data to the Plot level. From an urban morphology perspective, the Gaussian Mixture Model (GMM) clustering algorithm was applied to classify the form of residential plots, assigning a type parameter for each type: the per capita housing area, to describe population density differences among the types. We then used Pearson correlation analysis to assess the relationship between POI density and population density at various bandwidths, identifying the optimal bandwidth for different POI types and calculating the overall POI density for each plot to evaluate its locational attractiveness. A regression model was established using per capita housing area, POI density, and total building area to derive population weight layers for estimating population at the plot level. The results of accuracy assessment show that using the morphological type parameter can effectively improve the estimation accuracy at plot scale, especially in areas with diverse land-use patterns and lower population density. However, our optimized locational attractiveness calculation method shows only a slight improvement to the method using a fixed bandwidth. This study develops a more accurate population estimation method of plot-level based on morphological classification, and highlights the population distribution characteristics of different types of residential plots, aiding urban decision-makers in developing targeted strategies for housing optimization and community resource allocation.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
13.30
自引率
7.40%
发文量
111
审稿时长
32 days
期刊介绍: Computers, Environment and Urban Systemsis an interdisciplinary journal publishing cutting-edge and innovative computer-based research on environmental and urban systems, that privileges the geospatial perspective. The journal welcomes original high quality scholarship of a theoretical, applied or technological nature, and provides a stimulating presentation of perspectives, research developments, overviews of important new technologies and uses of major computational, information-based, and visualization innovations. Applied and theoretical contributions demonstrate the scope of computer-based analysis fostering a better understanding of environmental and urban systems, their spatial scope and their dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信