Two-dimensional hydrazone-linked covalent organic frameworks for iodine capture

IF 4.9 2区 化学 Q2 CHEMISTRY, PHYSICAL
Zhenzhen Zhao , Chaohui Li , Tianqing Zhao , Zhongliang Wen , Hui Hu , Yuanyuan Li , Ming Wang , Haibin Ma , Yanan Gao
{"title":"Two-dimensional hydrazone-linked covalent organic frameworks for iodine capture","authors":"Zhenzhen Zhao ,&nbsp;Chaohui Li ,&nbsp;Tianqing Zhao ,&nbsp;Zhongliang Wen ,&nbsp;Hui Hu ,&nbsp;Yuanyuan Li ,&nbsp;Ming Wang ,&nbsp;Haibin Ma ,&nbsp;Yanan Gao","doi":"10.1016/j.colsurfa.2025.136417","DOIUrl":null,"url":null,"abstract":"<div><div>With the rapid expansion and development of nuclear energy, the safe disposal of radioactive materials, especially iodine-containing nuclear waste, has become a serious concern. It is thus of significance to design adsorbent materials that can efficiently remove iodine and clarify the interaction between iodine and the material surface. In this work, three two-dimensional (2D) hydrazone-linked covalent organic frameworks (COFs), i.e., DETH-TB-COF, DETH-TFPB-COF and DETH-TATBA-COF, were synthesized via a Schiff-base condensation reaction, based on a nitrogen-rich linear building unit, 2,5-diethoxybenzene-1,4-dicarbohydrazide (DETH). Owing to high crystallinity, large porosity, excellent chemical stability, and good binding affinities towards iodine, the resultant COFs show a good iodine adsorption capacity for volatile iodine. At 75 °C under ambient pressure, the iodine adsorption capacities of the three COFs reached 2.53, 3.89, and 4.23 g g<sup>–1</sup>, respectively. Their good adsorption capability can be maintained even after five cycles. Furthermore, the mechanism analysis indicates the formation of electron transfer complexes between iodine molecules and the material surface, thereby enhancing the iodine adsorption capabilities of the COFs. This research provides guidance for the rational design of iodine adsorbents for the efficient capture of iodine in spent fuel reprocessing.</div></div>","PeriodicalId":278,"journal":{"name":"Colloids and Surfaces A: Physicochemical and Engineering Aspects","volume":"712 ","pages":"Article 136417"},"PeriodicalIF":4.9000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces A: Physicochemical and Engineering Aspects","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927775725003188","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

With the rapid expansion and development of nuclear energy, the safe disposal of radioactive materials, especially iodine-containing nuclear waste, has become a serious concern. It is thus of significance to design adsorbent materials that can efficiently remove iodine and clarify the interaction between iodine and the material surface. In this work, three two-dimensional (2D) hydrazone-linked covalent organic frameworks (COFs), i.e., DETH-TB-COF, DETH-TFPB-COF and DETH-TATBA-COF, were synthesized via a Schiff-base condensation reaction, based on a nitrogen-rich linear building unit, 2,5-diethoxybenzene-1,4-dicarbohydrazide (DETH). Owing to high crystallinity, large porosity, excellent chemical stability, and good binding affinities towards iodine, the resultant COFs show a good iodine adsorption capacity for volatile iodine. At 75 °C under ambient pressure, the iodine adsorption capacities of the three COFs reached 2.53, 3.89, and 4.23 g g–1, respectively. Their good adsorption capability can be maintained even after five cycles. Furthermore, the mechanism analysis indicates the formation of electron transfer complexes between iodine molecules and the material surface, thereby enhancing the iodine adsorption capabilities of the COFs. This research provides guidance for the rational design of iodine adsorbents for the efficient capture of iodine in spent fuel reprocessing.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.70
自引率
9.60%
发文量
2421
审稿时长
56 days
期刊介绍: Colloids and Surfaces A: Physicochemical and Engineering Aspects is an international journal devoted to the science underlying applications of colloids and interfacial phenomena. The journal aims at publishing high quality research papers featuring new materials or new insights into the role of colloid and interface science in (for example) food, energy, minerals processing, pharmaceuticals or the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信