Shahid Ali Khan , Xiangrong Li , Song Ni , Iftikhar Hussain , Rukun Liu , Amrit Kumar Thakur , Jijian Xu , Yinlin Shen , Alicia Kyoungjin An , Jiyun Zhao
{"title":"Experimental investigation of gallium-based composite PCM for battery thermal management applications","authors":"Shahid Ali Khan , Xiangrong Li , Song Ni , Iftikhar Hussain , Rukun Liu , Amrit Kumar Thakur , Jijian Xu , Yinlin Shen , Alicia Kyoungjin An , Jiyun Zhao","doi":"10.1016/j.rser.2025.115466","DOIUrl":null,"url":null,"abstract":"<div><div>Efficient thermal management is essential for the safety and performance of battery systems, extending their lifespan and reducing the risk of thermal runaway. This study investigates the use of gallium-based composite phase-change materials (CPCMs) for managing the thermal load of lithium-ion batteries (LIBs) during rapid discharge cycles. We synthesized CPCMs by integrating paraffin (PA) and gallium (Ga) in varying ratios, ensuring a consistent inclusion of 5% expanded graphite (EG) for structural stability. Advanced analytical techniques characterized the thermal properties and phase-transition behaviors of CPCMs. The results show that incorporating Ga significantly improves the thermal conductivity and stability of the composites, while also altering their crystallization and melting dynamics. When applied to a cylindrical LIB, CPCMs with higher Ga content demonstrated lower melting points and superior thermal management capabilities. Specifically, a composition of 76 wt<span><math><mtext>%</mtext></math></span> PA and 19 wt<span><math><mtext>%</mtext></math></span> Ga (CPCM3 at a 4:1 ratio) reduced the battery’s surface temperature by 39% at a 4 C discharge rate, relative to a standard PA and EG-based composite PCM. These findings underscore the potential of Ga-based CPCMs to enhance both the thermal performance and safety of LIBs under high-rate cycling conditions.</div></div>","PeriodicalId":418,"journal":{"name":"Renewable and Sustainable Energy Reviews","volume":"213 ","pages":"Article 115466"},"PeriodicalIF":16.3000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable and Sustainable Energy Reviews","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S136403212500139X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Efficient thermal management is essential for the safety and performance of battery systems, extending their lifespan and reducing the risk of thermal runaway. This study investigates the use of gallium-based composite phase-change materials (CPCMs) for managing the thermal load of lithium-ion batteries (LIBs) during rapid discharge cycles. We synthesized CPCMs by integrating paraffin (PA) and gallium (Ga) in varying ratios, ensuring a consistent inclusion of 5% expanded graphite (EG) for structural stability. Advanced analytical techniques characterized the thermal properties and phase-transition behaviors of CPCMs. The results show that incorporating Ga significantly improves the thermal conductivity and stability of the composites, while also altering their crystallization and melting dynamics. When applied to a cylindrical LIB, CPCMs with higher Ga content demonstrated lower melting points and superior thermal management capabilities. Specifically, a composition of 76 wt PA and 19 wt Ga (CPCM3 at a 4:1 ratio) reduced the battery’s surface temperature by 39% at a 4 C discharge rate, relative to a standard PA and EG-based composite PCM. These findings underscore the potential of Ga-based CPCMs to enhance both the thermal performance and safety of LIBs under high-rate cycling conditions.
期刊介绍:
The mission of Renewable and Sustainable Energy Reviews is to disseminate the most compelling and pertinent critical insights in renewable and sustainable energy, fostering collaboration among the research community, private sector, and policy and decision makers. The journal aims to exchange challenges, solutions, innovative concepts, and technologies, contributing to sustainable development, the transition to a low-carbon future, and the attainment of emissions targets outlined by the United Nations Framework Convention on Climate Change.
Renewable and Sustainable Energy Reviews publishes a diverse range of content, including review papers, original research, case studies, and analyses of new technologies, all featuring a substantial review component such as critique, comparison, or analysis. Introducing a distinctive paper type, Expert Insights, the journal presents commissioned mini-reviews authored by field leaders, addressing topics of significant interest. Case studies undergo consideration only if they showcase the work's applicability to other regions or contribute valuable insights to the broader field of renewable and sustainable energy. Notably, a bibliographic or literature review lacking critical analysis is deemed unsuitable for publication.